

SURVEILLANCE DE L'IMPACT SUR L'ENVIRONNEMENT DES RETOMBEES DE POLLUANTS

EveRé - Fos-sur-Mer (13)

SURVEILLANCE DE L'IMPACT SUR L'ENVIRONNEMENT DES RETOMBEES DE POLLUANTS

EveRé - Fos-sur-Mer (13)

Campagne de biosurveillance – automne 2022 Historique 2009-2022

Client : EveRé SAS

ZI de Fos-sur-Mer Route quai Minéralier Lieu-dit Caban Sud

13778 Fos-sur-Mer Cedex

N° de dossier :23-RA-01-LS-06N° de version :Version 1.0Date de remise :Février 2023

Destinataires: Mme CHRISTO Mme CRETE

a.christo@evere.fr e.crete@evere.fr

Affaire suivie par : Matthieu BAGARD

matthieu.bagard@biomonitor.fr

Ce rapport comporte **69 pages** y compris les annexes. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale.

	Rédaction	Vérification	Approbation
Nom	L.STENGER	M. BAGARD	J. MERSCH
Fonction	Chargé d'études	Responsable d'études	Gérant
Signature	tey		Theat

SOMMAIRE

LISTE DES FIGURES	4
LISTE DES TABLEAUX	4
1. CADRE ET OBJECTIFS DE L'INTERVENTION	5
1.1. Cadre	
1.2. Objectifs	5
1.3. Organisation des études	6
2. DESCRIPTION DU PROGRAMME DE SURVEILLANCE	6
2.1. Méthode mise en œuvre	
2.2. Localisation des stations de mesures	6
2.2.1. Aire d'étude	6
2.2.2. Macro-implantation	7
2.2.3. Micro-implantation	3
2.3. Déroulement de la campagne	5
2.4. Procédures analytiques et expression des résultats	5
2.5. Laboratoire d'analyses	6
2.6. Modalités d'interprétation des résultats	6
2.6.1. Comparaison des résultats entre stations	6
2.6.2. Comparaison aux valeurs repères	6
2.6.3. Comparaison aux valeurs de gestion	7
2.6.4. Comparaison aux valeurs historiques	7
3. CONDITIONS D'EXPOSITION DES STATIONS DE MESURES	7
4. RETOMBEES ATMOSPHERIQUES DE DIOXINES/FURANES	9
4.1. Les PCDD/F dans les végétaux	9
4.2. Résultats de la campagne automnale 2022 pour les PCDD/F	
4.3. Evolution des résultats depuis 2009	11
5. RETOMBEES ATMOSPHERIQUES DE METAUX	13
5.1. Résultats de la campagne automnale 2022 pour les métaux	13
5.2. Evolution des résultats de 2009 à 2022	15
5.2.1. Principe	
5.2.2. Analyse élément par élément	
6. CONCLUSION	29
ANNEXES	30

LISTE DES FIGURES

Figure 1. Plan de localisation des stations de biosurveillance active par les ray-grass autour du centre de traitement multifilière EveRé à Fos-sur-Mer
Figure 2. Régime des vents enregistrés lors de la période d'exposition des cultures standardisées de ray-grass du 25 octobre au 24 novembre 2022 (source : Météo-France)
Figure 3. Evolution des teneurs en dioxines/furanes (pg OMS-TEQ/g – TEF 2005 de MS) dans les graminées prélevées depuis 2009 dans l'environnement du Centre de Traitement Multifilière de déchets ménagers EveRé à Fos-sur-Mer
Figure 4. Concentrations en arsenic (As) mesurées dans les graminées depuis 2009 (en mg/kg de MS) 16
Figure 5. Concentrations en cadmium (Cd) dans les graminées mesurées depuis 2009 (en mg/kg de MS) 17
Figure 6. Concentrations en cobalt (Co) dans les graminées mesurées depuis 2009 (en mg/kg de MS)
Figure 7. Concentrations en chrome (Cr) dans les graminées mesurées depuis 2009 (en mg/kg de MS)
Figure 8. Concentrations en cuivre (Cu) dans les graminées mesurées depuis 2009 (en mg/kg de MS)
Figure 9. Concentrations en mercure (Hg) mesurées dans les graminées depuis 2009 (en mg/kg de MS) 21
Figure 10. Concentrations en manganèse (Mn) mesurées dans les graminées depuis 2009 (en mg/kg de MS) . 22
Figure 11. Concentrations en nickel (Ni) mesurées dans les graminées depuis 2009 (en mg/kg de MS)
Figure 12. Concentrations en plomb (Pb) mesurées dans les graminées depuis 2009 (en mg/kg de MS) 24
Figure 13. Concentrations en antimoine (Sb) mesurées dans les graminées depuis 2009 (en mg/kg de MS) 25
Figure 14. Concentrations en étain (Sn) mesurées dans les graminées depuis 2009 (en mg/kg de MS) 26
Figure 15. Concentrations en vanadium (V) dans les graminées mesurées depuis 2009 (en mg/kg de MS) 27
Figure 16. Concentrations en zinc (Zn) dans les graminées mesurées depuis 2009 (en mg/kg de MS)
LISTE DES TABLEAUX
Tableau 1. Procédures analytiques et expression des résultats 6
Tableau 2. Taux d'exposition des stations aux vents en provenance d'EveRé des stations de graminées lors de la période d'exposition du 25 octobre au 24 novembre 2022
Tableau 3. Concentrations en dioxines/furanes (pg OMS-TEQ/g de matière sèche – TEF 2005) dans les graminées exposées du 25 octobre au 24 novembre 2022 autour du site EveRé
Tableau 4. Concentrations en métaux (en mg/kg de MS) dans les graminées exposées du 25 octobre au 24 novembre 2022 dans l'environnement du site EveRél

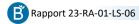
1. CADRE ET OBJECTIFS DE L'INTERVENTION

1.1. Cadre

L'étude réalisée concerne la surveillance de l'impact sur l'environnement des retombées atmosphériques de dioxines/furanes (PCDD/PCDF) et de métaux au voisinage du Centre de Traitement Multifilière de déchets ménagers EveRé, situé sur la commune de Fos-sur-Mer. Cette surveillance s'inscrit dans une démarche de surveillance des effets des activités industrielles sur l'environnement, comme stipulée dans l'arrêté du 2 février 1998, puis, dans le cas spécifique des activités d'incinération, dans l'arrêté du 20 septembre 2002. C'est sur cette base que les modalités de surveillance environnementale du site ont été prescrites, avec en particulier le suivi des traceurs spécifiques de l'UVE (dioxines/furanes et métaux). Ces modalités sont détaillées dans l'arrêté préfectoral d'autorisation d'exploitation n°1370-2011 A du 28 juin 2012 et son arrêté complémentaire n°2014-354 PC du 15 octobre 2014.

Depuis la publication de l'arrêté n°2021-86-PC du 17 août 2021, la surveillance environnementale des retombées atmosphériques de PCDD/F au voisinage d'EveRé est assurée à fréquence semestrielle au moyen d'un réseau de sept stations de mesure (jauges Owen). A la demande de l'exploitant, le suivi des retombées dans les graminées a été maintenu en 2022, ce qui permet de préserver la surveillance de l'impact environnemental des émissions atmosphériques d'EveRé sur les végétaux, conformément à l'AM du 20 septembre 2002 et à l'article 1.1 de l'APC du 17 août 2021. Le suivi dans les graminées a démarré en 2009 par l'établissement d'un état initial puis a été renouvelé chaque année depuis 2010, en période de fonctionnement nominal du site EveRé.

Le programme de surveillance réalisé en **2022** suit la procédure déjà appliquée les années précédentes, avec deux campagnes annuelles de biosurveillance active à l'aide de cultures standardisées de raygrass (norme NF X 43-901). Le présent rapport s'applique à présenter les résultats de la seconde des deux campagnes annuelles, réalisée en **automne 2022**, ainsi que l'**historique depuis 2009** des données obtenues dans le cadre de la surveillance environnementale du site.


1.2. Objectifs

Dans le cadre du programme de surveillance environnemental engagé par EveRé, la société BioMonitor a été chargée des mesures sur les **cibles végétales**.

L'étude consiste en :

- la réalisation de mesures fondées sur une méthode de biosurveillance¹ active normalisée NF X43-901;
- o la rédaction d'un document de présentation et d'interprétation des résultats.

¹ Biosurveillance de l'environnement : recouvre l'ensemble des méthodes faisant appel aux propriétés particulières d'un organisme biologique, d'un groupe d'organismes ou encore d'une fonction spécifique d'un organisme pour prévoir et/ou révéler une altération de la qualité de l'environnement et d'en suivre l'évolution dans le temps et l'espace.

Page 5 / 69

Dans le cadre de cette surveillance, les **traceurs** de l'activité à rechercher sont :

- les dioxines/furanes (PCDD/F);
- o l'arsenic (As), le cadmium (Cd), le chrome (Cr), le cobalt (Co), le cuivre (Cu), le mercure (Hg), le manganèse (Mn), le nickel (Ni), le plomb (Pb), l'antimoine (Sb), l'étain (Sn), le thallium (Tl), le vanadium (V) et le Zinc (Zn), soit un total de 14 métaux.

1.3. Organisation des études

Le programme annuel de surveillance se décompose en deux séries de mesures réalisées :

- o au printemps (phase 1);
- o en automne (phase 2).

Les résultats relatifs à la phase 1 ont été présentés et interprétés dans le rapport 22-RA-06-LS-14.

2. DESCRIPTION DU PROGRAMME DE SURVEILLANCE

2.1. Méthode mise en œuvre

La méthode retenue pour cette étude fait appel à des cultures standardisées de ray-grass selon la norme AFNOR **NF X43-901**. Cette méthode de biosurveillance active permet d'évaluer de manière standardisée les retombées atmosphériques sur des matrices végétales sur des sites et des périodes d'exposition choisies. L'existence de valeurs repères issues d'une large base de données et de valeurs réglementaires laissent la possibilité d'effectuer une interprétation approfondie des résultats.

2.2. Localisation des stations de mesures

2.2.1. Aire d'étude

L'aire d'étude est centrée sur la partie sud de la plaine de la Crau qui couvre une partie de l'estuaire du Rhône. La zone est essentiellement agricole avec une partie irriguée lorsque l'on s'approche de la côte. C'est dans cette dernière partie de la plaine de la Crau qu'est implantée une large zone industrielle qui va de Port-Saint-Louis à l'ouest, à la ville de Fos-sur-Mer à l'est. Le Centre de Traitement Multifilière de déchets ménagers EveRé est implanté dans la partie ouest du port de Fos-sur-Mer, entre les darses 1 et 2 du Grand Port Maritime de Marseille.

L'environnement industriel de la zone est plutôt dense en matière d'activités industrielles. À proximité de l'installation sont ainsi recensés :

- o au nord-est, les sociétés LafargeHolcim et Solamat ;
- o au nord/nord-est, l'aciérie Ascometal;
- o au nord-ouest, une zone de friche puis le site Lyondell ;
- o au sud, une zone de friche suivie en bordure de mer par CombiGolfe, une centrale thermique au gaz ;
- o à l'est, les installations sidérurgiques d'ArcelorMittal et les terminaux méthanier et pétrolier.

2.2.2. Macro-implantation

L'implantation des stations de mesures a été définie par l'exploitant et a fait l'objet d'une procédure de validation par la DREAL. Les sites d'exposition ont été choisis en 2009 en tenant compte :

- o de l'étude des conditions météorologiques sur la zone ;
- o de la présence d'autres émetteurs potentiels sur le secteur d'étude ;
- o de l'étude de dispersion mise à disposition par EveRé;
- o des demandes faites par des membres de la Commission Locale d'Information et de Surveillance (CLIS) lors de la réunion du 20 avril 2011 (ajout d'une septième station) et du 12 décembre 2019 (ajout d'une huitième station).

La localisation de certains points a pu légèrement évoluer du fait des contraintes de terrain. La localisation actuelle des stations est présentée ci-après (**figure 1**).

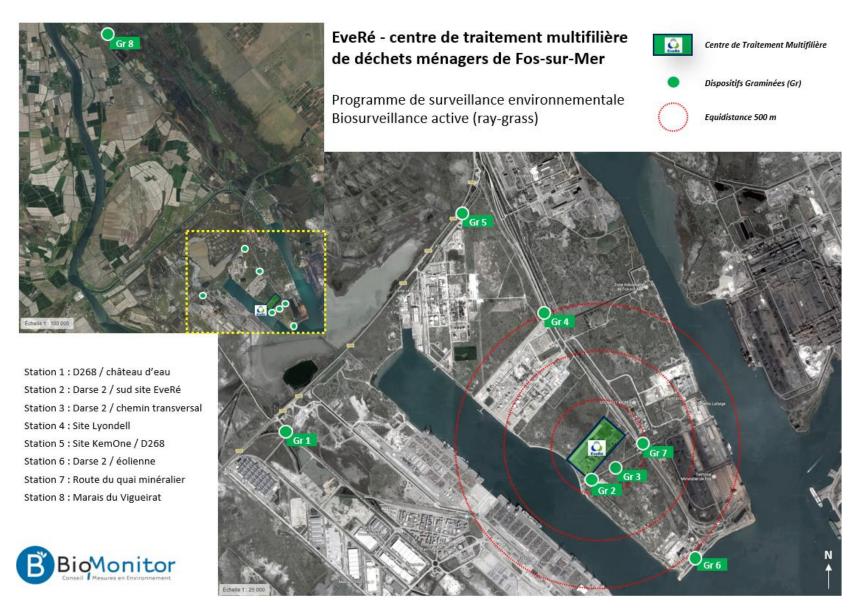
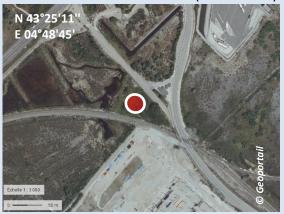


Figure 1. Plan de localisation des stations de biosurveillance active par les ray-grass autour du centre de traitement multifilière EveRé à Fos-sur-Mer



2.2.3. Micro-implantation

Station 1: D268 Château d'eau

La station est localisée à l'ouest du site à 3,0 km. Située hors de l'influence directe d'EveRé, elle constitue un site d'exposition témoin représentatif de son environnement industriel (témoin haut).

Station 2 : Darse 2 - Limite de propriété sud du site

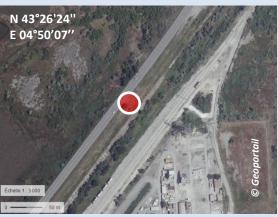
Le site est localisé à 0,5 km au sud en limite de propriété, en zone d'impact potentiel principal.

Station 3 : Darse 2 – Chemin transversal à la Route du Quai Minéralier

La station est située à 0,5 km au sud/sud-est du site EveRé, en zone d'impact potentiel principal.

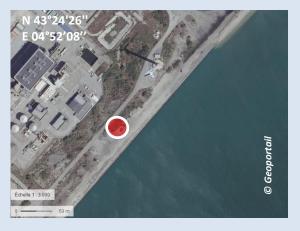
Station 4: Site Lyondell

Les graminées sont installées à environ 1,5 km au nord/nord-ouest du site, en zone d'impact potentiel secondaire.



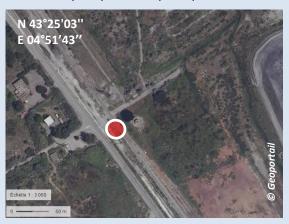
Station 5 : Site KemOne D268

La station est localisée à 2,5 km au nord-ouest de l'installation en bordure de la N268, en zone d'impact potentiel secondaire.



Station 6: Darse 2 - Eolienne

Le site d'exposition se situe à 1,6 km au sud/sud-est du site au niveau de l'embouchure de la darse 2, dans l'axe des vents dominants en provenance d'EveRé mais à distance plus importante du site que les stations 2 et 3.



Station 7 : Route du Quai Minéralier - Château d'eau

L'aire est localisée à 0,6 km à l'est/sud-est du site, en zone d'impact potentiel principal.

Station 8 : Marais du Vigueirat

L'aire est localisée à 15,4 km au nord-ouest, en zone rural hors de l'influence directe de la ZIP de Fossur-Mer. Elle constitue un site d'exposition témoin représentatif de l'environnement local rural (témoin bas).

2.3. Déroulement de la campagne

Les plantes ont été pré-cultivées sous serre pendant 6 semaines puis installées sur site le **25 octobre 2022 et retirées le 24 novembre 2022**, soit une durée de **30 jours** conforme aux prescriptions de la norme NF X 43-901 (28 +/- 2 jours).

2.4. Procédures analytiques et expression des résultats

Les contaminants recherchés et les caractéristiques des méthodes analytiques mises en œuvre sont présentés dans le **tableau 1** ci-après.

Les méthodes analytiques et les limites de quantification permettent d'atteindre des concentrations compatibles avec les valeurs attendues dans l'environnement et avec les valeurs réglementaires.

Rapport 23-RA-01-LS-06 Page 5 / 6

Tableau 1. Procédures analytiques et expression des résultats

Contaminants recherchés	Méthode	Incertitude analytique	Limite de quantification	Unités
PCDD/F (17 congénères)	HRGC/HRMS ^(a) selon la méthode interne MOp C-4/57	17 %	0,4 pg/g de MS	pg OMS ₂₀₀₅ -TEQ/g de MS
Métaux				
As, Cd, Pb	ICP-MS ^(b)		0,025 mg/kg MS	
Cr, Co, Cu, Mn, Ni, Sb, Sn, Tl, V	selon la méthode interne MOp C-4/18		0,125 mg/kg MS	
Zn		Exprimée pour chaque élément ^(d)	0,250 mg/kg MS	mg/kg de MS
Hg	AFS ^(c) selon la méthode interne MOp C-4/47	,	0,025 mg/kg MS	

⁽a) Chromatographie gazeuse haute résolution avec spectromètre de masse haute résolution.

2.5. Laboratoire d'analyses

Les analyses ont été confiées au laboratoire Micropolluants Technologie, partenaire de BioMonitor. Le laboratoire dispose de l'accréditation COFRAC selon la norme NF EN ISO/CEI 17025 (accréditation n°1-1151) attestant de la compétence pour la réalisation de ce type d'analyse.

2.6. Modalités d'interprétation des résultats

2.6.1. Comparaison des résultats entre stations

Le premier niveau d'interprétation des résultats consiste à comparer l'ensemble des résultats obtenus sur les stations d'impact potentiel à ceux relevés sur les stations témoins, stations à l'abri des vents dominants en provenance de l'usine, situées dans l'environnement industriel d'EveRé (témoin haut, station 1) et dans un contexte rural (témoin bas, station 8). À ce niveau, on tiendra compte des conditions météorologiques et des influences d'autres sources potentielles sur la zone d'étude.

2.6.2. Comparaison aux valeurs repères

Pour certaines matrices (air ambiant, denrées alimentaires, alimentation animale, etc.), les résultats des campagnes de surveillance peuvent être comparés à des valeurs réglementaires (teneurs maximales, seuils d'intervention, etc.). Pour la méthode de biosurveillance des retombées par les graminées, il n'existe pas de valeurs réglementaires ou de seuils basés sur des travaux récents permettant de qualifier le degré d'impact observé en cas de dépassement de la référence locale. Pour permettre une interprétation approfondie des données de surveillance environnementale à l'aide d'outils standardisés et actualisés, BioMonitor a mis au point une grille d'interprétation fondée sur

⁽b) Plasma à couplage inductif avec spectromètre de masse.

⁽c) Spectrométrie de fluorescence atomique.

⁽d) Incertitude analytique exprimée par élément : As=20%, Cd=30%, Co=25%, Cr=30%, Cu=30%, Hg=25%, Mn=25%, Ni=35%, Pb=30%, Sb=25%, Sn=25% Tl= 25%, V=25% et Zn=25%

l'analyse statistique des données de surveillance collectées par notre bureau d'études pendant les quatre dernières années sur l'ensemble du territoire français. La méthodologie de construction de cette grille est détaillée en **annexe 1**. Les valeurs repères ainsi déterminées sont présentées dans les tableaux de résultats ci-après.

La grille d'évaluation de BioMonitor est composée de deux seuils :

- le seuil de vigilance, en-dessous duquel les résultats sont considérés comme conformes aux valeurs attendues hors influence industrielle (valeur haute de la gamme témoin);
- le seuil de retombées significatives, au-dessus duquel on identifie des dépôts nettement supérieurs au niveau de fond attendu hors influence industrielle, dont la source doit être confirmée par des investigations complémentaires.

Les valeurs dépassant le seuil de vigilance mais qui restent inférieures au seuil de retombées significatives indiquent des dépôts plus marqués qu'attendus hors influence industrielle mais qui ne traduisent pas nécessairement un impact environnemental préoccupant. De telles valeurs restent à surveiller, notamment dans le cas d'une tendance à la hausse, d'un caractère récurrent ou d'un changement d'usage des milieux.

2.6.3. Comparaison aux valeurs de gestion

À titre indicatif, dans le cas de certains contaminants, il existe des **seuils sanitaires** définis pour les aliments pour animaux, dont les fourrages. En acceptant l'hypothèse que le modèle d'exposition employé, à savoir les cultures de ray-grass, soit représentatif des fourrages, les résultats obtenus peuvent alors être comparés à ces valeurs de gestion.

2.6.4. Comparaison aux valeurs historiques

Les résultats des campagnes réalisées en 2022 seront comparés à ceux obtenus depuis le début de la surveillance environnementale en 2009, de façon à juger l'évolution des teneurs en contaminants sur le domaine d'étude.

3. CONDITIONS D'EXPOSITION DES STATIONS DE MESURES

L'analyse météorologique est réalisée à partir des données horaires collectées auprès de la station Météo-France d'Istres (43°31′18"N; 04°55'18"E) localisée à 12 km au NNE du site. La **figure 2** ci-après présente les roses des vents correspondant à la période d'exposition des graminées du 25 octobre au 24 novembre 2022. La rose des vents est décrite de façon détaillée en **annexe 2**. Pour les trois classes de force des vents (1,5 à 4,5 m/s; 4,5 à 8,0 m/s et > 8,0 m/s), on retrouve par direction la fréquence des vents exprimée en pourcentage.

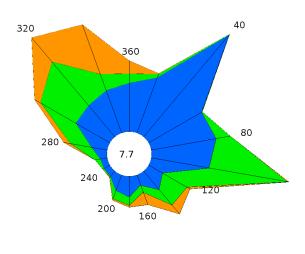


Figure 2. Régime des vents enregistrés lors de la période d'exposition des cultures standardisées de ray-grass du 25 octobre au 24 novembre 2022 (source : Météo-France)

Comme souvent, la zone d'étude a été venteuse pendant la période d'exposition des graminées avec seulement 7,7 % des observations avec une vitesse inférieure à 1,5 m/s. Les vents observés proviennent du nord-ouest (290° - 10°) dans 32,4 % des cas, de l'est/sud-est (70° - 150°) pour 26,0 % des occurrences et dans une moindre mesure du nord-est (10° - 70°) avec 20,9 % des observations. Les vents en provenance de secteur sud-ouest sont très peu représentés. Les vents mesurés sont faibles (entre 1,5 et 4,5 m/s) pour 54,3 % des observations, modérés (entre 4,5 et 8 m/s) pour 26,3 % des cas et forts (supérieur à 8 m/s) pour des 11,7 % des enregistrements.

La connaissance de la position géographique des stations et du régime des vents pendant la période de culture des graminées permet d'avoir une estimation de la fréquence d'exposition potentielle de chacune des stations vis-à-vis du site EveRé. Ainsi, le tableau 2 ci-après rappelle l'emplacement des dispositifs en fonction de leur distance par rapport au site EveRé et des occurrences venteuses. Ces paramètres (vent et distance) sont deux des facteurs caractérisant la dispersion des contaminants recherchés. Le taux d'exposition est déterminé en considérant l'orientation de chaque station par rapport à l'émetteur et en calculant la somme des occurrences venteuses en provenance de celui-ci, en tenant compte d'un angle de +/- 30°.

Tableau 2. Taux d'exposition des stations aux vents en provenance d'EveRé des stations de graminées lors de la période d'exposition du 25 octobre au 24 novembre 2022

Stations	Distance /source (km)	Orientation /source		Occurrence moyenne de vent relative à l'orientation des dispositifs
Station 1	3,4	0	90°	20 - 25 %
Station 2	0,4	S	360°	20 - 25 %
Station 3	0,4	S/SE	340°	25 - 30 %
Station 4	1,5	N/NO	160°	5 - 10 %
Station 5	2,8	NO	140°	10 - 15 %
Station 6	1,7	S/SE	320°	25 - 30 %
Station 7	0,6	E/SE	280°	10 - 15 %
Station 8	15,4	NO	150°	10 - 15 %

Les stations 2, 3 et 6, situées au sud/sud-est de l'UVE, ont été les plus exposées aux vents en provenance de l'installation. L'éloignement important de la station 8 permet de confirmer sa typologie de témoin rural. Le témoin haut (station 1) a quant à lui été plus exposé qu'habituellement aux vents en provenance de la ZIP. Enfin, les stations 4, 5 et 7 ont été moins soumises aux vents en provenance de l'UVE mais restent sous l'influence d'autres sites industriels présents sur la zone.

En considérant la rose des vents d'Istres comme représentative du régime des vents observable sur le secteur d'étude et si l'on considère le site comme émetteur unique, les stations 2, 3 et 6 peuvent être considérées comme stations d'impact principal tandis que les stations 4, 5 et 7 peuvent être caractérisées comme stations d'impact secondaire.

4. RETOMBEES ATMOSPHERIQUES DE DIOXINES/FURANES

4.1. Les PCDD/F dans les végétaux

Les dioxines/furanes ne sont naturellement pas présents dans les végétaux. Lorsque les PCDD/F sont décelées de manière significative, leur origine est en général à rechercher du côté des dépôts atmosphériques plutôt que d'une éventuelle contamination des sols. Ce dernier cas n'est toutefois pas à exclure dans un contexte industriel où peuvent subsister des traces historiques de contamination. Retrouver des dioxines/furanes dans les végétaux signifie donc qu'il y a eu, dans un passé très récent (en général l'année si l'on s'attache aux plantes vasculaires à cycle annuel), des dépôts d'origine atmosphérique. Les polluants impactant la plante peuvent être immédiatement lessivés, par la pluie ou le vent, ou être retenus par la plante. La rétention du polluant peut alors se restreindre à une simple action mécanique (rétention dans les poils adsorbants par exemple). Le dernier transfert possible est le passage du polluant dans la cellule. En général, ce dernier type de transfert est plus lent, plus rare, mais souvent définitif, la cellule stockant la molécule indésirable.

Le phénomène mesuré avec les ray-grass inclut ces trois possibilités. Utilisé comme modèle d'exposition des fourrages, le ray-grass rend compte du phénomène global de dépôts durant une période donnée, de l'adsorption et de l'absorption.

4.2. Résultats de la campagne automnale 2022 pour les PCDD/F

Les teneurs totales en dioxines/furanes tenant compte de la toxicité associée de chacun des 17 congénères analysés dans les graminées exposées pendant la campagne de mesure automnale de 2022 dans l'environnement du Centre de Traitement Multifilière EveRé sont détaillées dans le **tableau 3** ci-après. Les bordereaux analytiques détaillés sont présentés en **annexe 3**.

L'interprétation des résultats d'analyses des dioxines/furanes dans les graminées est basée sur une expression majorante des teneurs (TE_{max}), c'est-à-dire que les valeurs inférieures aux seuils de quantification ont été considérées comme étant égales à ces mêmes seuils. Les valeurs supérieures au témoin local haut sont soulignées, celles situées au-dessus du seuil de vigilance sont en gras et celles en rouge sont supérieures au seuil de retombées.

Tableau 3. Concentrations en dioxines/furanes (pg OMS-TEQ/g de matière sèche – TEF 2005) dans les graminées exposées du 25 octobre au 24 novembre 2022 autour du site EveRé

Stations	Dénomination	Typologie	Orientation /source	Distance /source	PCDD/F pg TEQ _{OMS-2005} / g MS
Station 2	Darse 2 / Sud site EveRé		S	0,4	<u>1,84</u>
Station 3	Darse 2 / Chemin transversal	Impact potentiel	S/SE	0,4	<u>4,22</u>
Station 6	Darse 2 / Eolienne	Axe SE	S/SE	1,7	<u>1,32</u>
Station 7	Route du quai minéralier		E/SE	0,6	0,77
Station 4	Site Lyondell	Site Lyondell N/NO 1,5		1,5	<u>1.24</u>
Station 5	Site KemOne / D268	Axe NO	NO	2,8	<u>1,33</u>
Station 1	D268 / Château d'eau	Témoin haut	0	3,4	0,86
Station 8	Mas du Vigueirat	Témoin bas	NO	15,4	0,33
	0,36				
	0,68				
	0,85				

⁽a) Valeur haute de la gamme de teneurs attendues dans l'environnement en l'absence de sources émettrices locales, déterminée selon la norme XP X43-910

Rapport 23-RA-01-LS-06 Page 10 / 6

⁽b) Seuil de retombées significatives déterminé selon Cecconi et al. (2019)

⁽c) Fixée par l'arrêté du 30 octobre 2013 fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation des animaux.

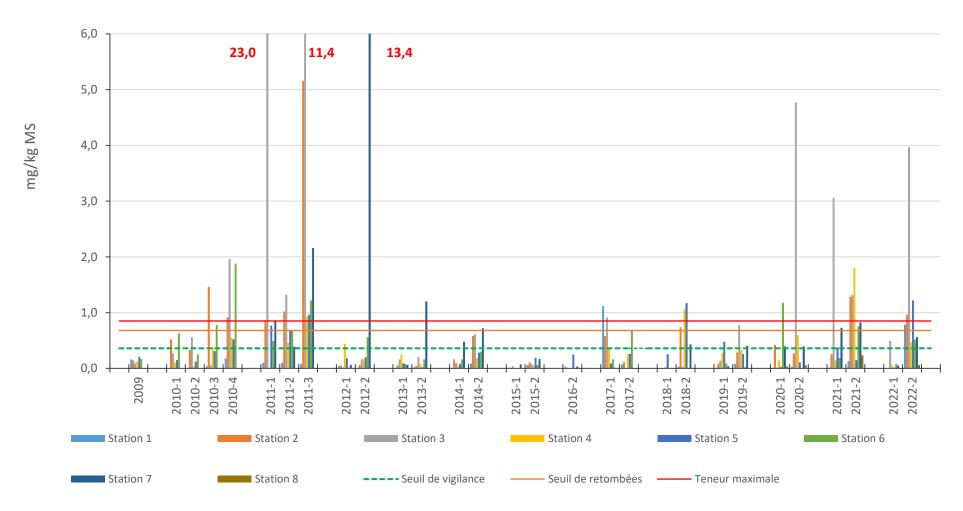
La teneur en PCDD/F la plus faible de la zone d'étude, conforme aux valeurs attendues hors influence industrielle, est enregistrée sur la **station 8**, ce qui confirme son statut de témoin bas de l'étude. Le témoin haut (**station 1**) a été plus exposé aux vents en provenance de la zone industrielle qu'ordinaire et affiche une valeur supérieure aux seuils de vigilance et de retombées significatives. Concernant les stations d'impact potentiel, seule la **station 7**, située à l'est/sud-est de l'UVE, présente une valeur inférieure au seuil de retombées significatives. Au sud de l'usine, sur les **stations 2**, 6 et surtout 3, les concentrations en PCDD/F sont supérieures aux témoins locaux (y compris le témoin haut) et au seuil révélateur d'un impact avéré. C'est également le cas au nord d'EveRé sur les **stations 4** et 5 pourtant moins soumises aux vents en provenance de l'usine.

Considérant l'ensemble des données recueillies au cours de la campagne d'automne 2022, les résultats indiquent des niveaux de retombées en PCDD/F plus marqués dans la zone d'influence de l'UVE en comparaison aux sites témoins. Pour les stations 2, 4 et 6, l'obtention de valeurs hautes est en partie due aux limites de quantification élevées des congénères les plus toxiques, qui n'ont pas été détectés mais qui contribuent de manière importante au total en équivalents de toxicité.

À titre indicatif, la teneur maximale admise dans les fourrages, fixée à 0,85 pg OMS-TEQ/g MS, est atteinte sur les stations 2, 3, 4, 5 et 6. On rappelle toutefois que les sites concernés par ces niveaux marqués de retombées de PCDD/F sont situées au cœur de la ZIP et ne sont pas dédiés à l'élevage (pâturage, fourrage).

Dans l'ensemble, les résultats de la campagne d'automne 2022 relatifs aux PCDD/F mettent en évidence des dépôts marquées sur l'ensemble de la zone d'étude, provenant probablement de multiples sources industrielles. Une contribution attribuable à EveRé est toutefois possible si l'on considère la teneur élevée mesurée au droit de la station 3 située sous les vents de l'UVE pendant la période d'exposition des graminées.

4.3. Evolution des résultats depuis 2009


La **figure 3** ci-après présente l'évolution des concentrations en PCDD/F dans les graminées échantillonnées depuis 2009. Les résultats sont exprimés en pg OMS-TEQ/g -TEF 2005 de MS en considérant les valeurs inférieures aux limites de détection égales à 0 afin de pouvoir s'affranchir des variations des limites de détection au cours des saisons. En effet, selon la saison d'exposition des graminées, les quantités de biomasses collectées sont différentes. Or, ces dernières ont une forte influence sur la valeur de la limite de quantification. Les résultats détaillés des teneurs en dioxines/furanes (pg OMS-TEQ/g de matière sèche – TEF 2005) depuis le début des programmes de mesures sont présentés en **annexe 4**.

L'interprétation de l'historique des résultats permet de distinguer quatre périodes :

- o la campagne 2009, qui constitue l'état initial;
- o la période 2010-2011, au cours de laquelle des teneurs marquées ont été observées ;
- o la période 2012-2019, durant laquelle les teneurs tendant à diminuer puis à se stabiliser ;
- la période 2020-2022, pendant laquelle des concentrations élevées sont de nouveau relevées.

PCDD/F 2009-2022 (OMS 2005, <LQ = 0)

Figure 3. Evolution des teneurs en dioxines/furanes (pg OMS-TEQ/g – TEF 2005 de MS) dans les graminées prélevées depuis 2009 dans l'environnement du Centre de Traitement Multifilière de déchets ménagers EveRé à Fos-sur-Mer

Rapport 23-RA-01-LS-06

Page 12 / 69

Situation en 2009 : état initial

En août 2009, une première série de mesures a été réalisée avant la mise en service des installations, constituant ainsi un état initial du site. Lors de cette campagne, les résultats de mesures, globalement homogènes, s'apparentent à des concentrations représentatives des valeurs attendues en milieu industriel peu impacté, voire en milieu rural pour certaines stations. Il est également à noter que ces mesures ont été réalisées durant une période de sous-activité industrielle de la ZIP de Fos-sur-Mer (certains sites étaient en effet en activité réduite voire à l'arrêt).

Situation en 2010-2011 :

Au cours de cette période, les teneurs en PCDD/F mesurées dans les graminées tendent à augmenter sur l'ensemble de la zone d'étude. On détecte ponctuellement des valeurs particulièrement marquées, notamment sur les stations 2, 3, 6 et 7 qui se situent en zone d'impact potentiel. Toutefois, un lien direct avec l'activité du site ne peut pas toujours être établi. On note par exemple que :

- les valeurs fortes ne sont pas systématiquement corrélées à l'exposition potentielle des stations aux retombées éventuelles provenant d'EveRé;
- o un incendie de broussaille sur la zone d'étude a perturbé les mesures en été 2011 ;
- o le site EveRé était en sous-activité en automne 2011.

Situation en 2012 - 2019 :

Une tendance à la baisse des niveaux de PCDD/F est constatée par rapport à 2011. Les teneurs sont pour la plupart inférieures au seuil sanitaire et restent globalement conformes aux valeurs attendues dans des zones non impactées par un émetteur. Quelques valeurs plus élevées sont observées, excédant parfois le seuil réglementaire, notamment en 2012 et 2013 pour la station 7, en 2017 pour la station 1 et en 2018 pour les stations 4 et 5. Toutefois, ces observations restent ponctuelles et sont souvent décorrélées de l'exposition des stations aux vents en provenance d'EveRé.

Evolution récente (2020-2022):

Les résultats relevés depuis 2020 montrent des valeurs plus élevées, notamment sur la station 3. Lors des campagnes d'automne, les concentrations relevées apparaissent en moyenne supérieures à celles enregistrées lors des campagnes de printemps. Les niveaux de retombées en PCDD/F sont également plus marqués dans la zone d'influence de l'UVE en comparaison aux sites témoins.

5. RETOMBEES ATMOSPHERIQUES DE METAUX

5.1. Résultats de la campagne automnale 2022 pour les métaux

Le **tableau 4** ci-après présente les résultats relatifs aux métaux mesurés dans les graminées exposées en automne 2022. Les résultats détaillés sont notifiés dans les bordereaux analytiques en **annexe 5**. Les valeurs supérieures aux deux témoins locaux sont soulignées, celles situées au-dessus de la gamme de valeurs repères pour la typologie témoin sont soulignées et celles excédant le seuil de retombées sont indiquées en rouge.

Tableau 4. Concentrations en métaux (en mg/kg de MS) dans les graminées exposées du 25 octobre au 24 novembre 2022 dans l'environnement du site EveRél

Stations	Nom	Typologie	As	Cd	Со	Cr	Cu	Hg	Mn	Ni	Pb	Sb	Sn	ті	V	Zn
Station 2	Darse 2 Sud EveRé	Impact principal Axe SE	0,12	0,15	0,20	0,50	8,0	<0,03	74	5,4	<u>0,51</u>	<0,13	<0,13	<0,13	0,15	48,5
Station 3	Darse 2 Chemin transv.		0,12	0,10	0,19	0,40	7,5	<0,03	78	5,4	<u>0,58</u>	<0,13	<0,13	<0,13	<0,13	42,0
Station 7	Route du quai minéralier		0,13	0,09	0,47	0,64	10,8	<0,03	82	7,6	<u>0,70</u>	<0,13	<0,13	<0,13	<u>0,52</u>	53,4
Station 6	Darse 2 Eolienne		0,09	0,10	0,51	0,39	12,3	<0,03	109	6,6	<u>0,36</u>	<0,13	0,16	<0,13	0,19	53,2
Station 4	Site Lyondell	Impact secondaire	<u>0,24</u>	0,14	0,33	<u>2,67</u>	10,5	<0,03	79	6,1	<u>2,32</u>	0,19	<u>0,46</u>	<0,13	<u>0,92</u>	54,3
Station 5	Site KemOne	Axe NO	0,11	0,07	0,42	<u>0,83</u>	9,6	<0,03	87	7,6	<u>0,41</u>	<0,13	<0,13	<0,13	0,20	52,0
Station 1	D268 Château d'eau	Témoin haut	0,09	0,09	<0,13	0,30	6,8	<0,03	64	4,8	0,16	0,18	<0,13	<0,13	<0,13	41,2
Station 8	Marais du Vigueirat	Témoin bas	0,06	0,07	0,46	0,22	8,0	<0,03	88	6,5	0,06	<0,13	<0,13	<0,13	<0,13	46,0
Seuil de vigilance ^(a)		0,17	0,06	0,68	0,40	4,2	<0,03	116	5,6	0,30	<0,13	<0,13	<0,13	0,20	21,4	
Seuils de reto	Seuils de retombées significatives ^(b)		0,32	0,12	1,29	0,76	7,9	0,05	219	10,5	0,56	0,24	0,24	0,24	0,38	58,5
Teneurs maxi	males ^(c,d)		2,27	1,14	-	-	-	0,11	-	-	34,1	-	-	-	-	-

⁽a) Valeurs obtenues sur la base d'un traitement statistique des témoins obtenus par Biomonitor de 2016 à 2019, selon la norme AFNOR XP X43-910.

Rapport 23-RA-01-LS-06 Page 14 / 69

⁽b) l'arrêté du 29 août 2014 modifiant l'arrêté du 12 janvier 2001 (abrogation annexe 1) fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation pour animaux.

⁽c) RÈGLEMENT (UE) 2015/186 DE LA COMMISSION du 6 février 2015 modifiant l'annexe I de la directive 2002/32/CE du Parlement européen et du Conseil en ce qui concerne les teneurs maximales en arsenic, en fluor, en plomb, en mercure, en endosulfan et en graines d'Ambrosia.

Les **stations 1** et **8** présentent des teneurs conformes à celles attendues dans une zone hors influence de source émettrice, confirmant ainsi leur statut de points de mesure « témoin », représentatifs de l'environnement local en contexte industriel (station 1) et rural (station 8). Seuls les teneurs en Cd et Sb sur la station 1 et en Zn sur les deux stations témoins se révèlent plus marquées que la valeur repère « témoin », mais sans dépassement important. Pour le **Zn**, ces dépôts modérés semblent concerner l'ensemble du domaine d'étude, y compris le témoin bas.

Comme c'est généralement le cas, le **Hg** et le **Tl** n'ont été détectés sur aucune station à un niveau supérieur à leur limite de quantification. Les concentrations en **As**, **Co**, **Cu**, **Mn**, **Ni**, **Sb**, **Sn** et **V** obtenues sur les stations d'impact potentiel sont globalement équivalentes aux témoins locaux et sont comprises dans la gamme de valeurs représentatives d'une typologie « témoin », à l'exception de l'As, du Sn et du V sur la station 4, du Cu sur la station 6 et du V sur la station 7. En ce qui concerne le **Cd** et le **Zn**, les concentrations sont globalement supérieures au seuil de vigilance caractéristique d'une zone non impactée. Celles mesurées sur les stations d'impact potentiel restent cependant équivalentes à celles relevées sur les témoins locaux. Ce n'est pas le cas du **Pb** pour lequel les niveaux obtenus sur les stations d'impact potentiel apparaissent tous supérieurs à ceux des témoins locaux et sont en dehors de la gamme de valeurs caractéristiques d'une zone de typologie témoin. La situation est intermédiaire en ce qui concerne le **Cr**, qui présente des teneurs plus marquées sur les stations 4, 5 et 7.

Pris dans leur ensemble, ces résultats mettent en avant des concentrations métalliques plus marquées au droit de la station 4, pourtant peu soumise aux vents en provenance de l'UVE, avec notamment des dépassements du seuil de retombées significatives pour le **Cr**, le **Pb**, le **Sn** et le **V**. Pour ce point de mesure, l'hypothèse d'une influence d'autres sources d'émission peut être avancée. Les stations d'impact potentiel, les plus exposées (stations 2, 3, 6 et 7), affichent des teneurs pour certaines relativement élevées, notamment en Cd, Cr et Pb, mais sans dépassement important et avec peu de corrélation au degré d'exposition des stations au vent en provenance d'EveRé. Ces résultats traduisent plus largement le contexte industriel de la zone d'étude, dans lequel il est difficile d'identifier un impact spécifique d'EveRé. À titre indicatif, les teneurs maximales en As, Cd, Hg et Pb admises dans les fourrages n'ont pas été dépassées.

5.2. Evolution des résultats de 2009 à 2022

5.2.1. Principe

Comme pour les dioxines/furanes, de multiples campagnes de mesure de teneurs en métaux dans les ray-grass exposées ont été réalisées autour du site EveRé depuis 2009. L'historique des résultats est présenté dans tableaux de synthèse (annexe 6) et pour les éléments régulièrement détectés sous formes d'histogrammes (figures 4 à 16). La comparaison entre les campagnes de mesures permet de présenter l'évolution spatiotemporelle des niveaux de dépôts atmosphériques et éventuellement de mieux identifier les sources d'émissions (associations entre éléments et origine des dépôts). Les résultats sont également comparés aux valeurs interprétatives (seuil de vigilance, seuil de retombées et valeurs réglementaires dans les fourrages). Par commodité de lecture, les incertitudes analytiques et les valeurs inférieures aux limites de quantification ne sont pas représentées.

5.2.2. Analyse élément par élément

Les **figures 4** à **16** présentent élément par élément les teneurs métalliques observées depuis 2009. Pour chacun des métaux, le seuil de vigilance et le seuil de retombées significatives, sont visualisés respectivement par une ligne horizontale verte et orange. Pour certains métaux, la valeur réglementaire (teneur maximale dans les fourrages) est représentée par une ligne horizontale rouge. Les résultats détaillés depuis 2009 sont fournis en **annexe 6**.

■ Cas de l'arsenic (As)

Pour l'As, le seuil de vigilance est fixé à 0,17 mg/kg MS. Le seuil de retombées significatives pour l'arsenic est de 0,32 mg/kg de MS. Il existe par ailleurs un seuil sanitaire à 2,27 mg/kg de MS provenant de la directive 2002/32 modifiée par le règlement UE 2015/186 fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation des animaux. Ce seuil sanitaire reste indicatif car aucune culture pour l'alimentation animale n'est réalisée dans les environs immédiats du site EveRé.

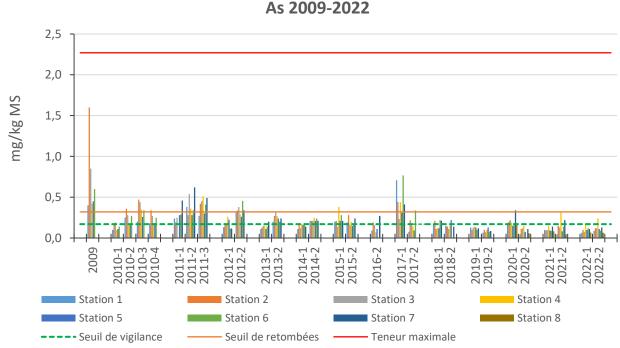


Figure 4. Concentrations en arsenic (As) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Pour cet élément, la situation a globalement évolué favorablement depuis l'état initial établi en 2009. Les valeurs mesurées restent inférieures à celles observées lors de l'état initial (à l'exception d'une valeur sur la station 4 lors de la troisième campagne 2011 et de l'année 2017 sur les stations 1, 4 et 6). On notera que, de 2013 à 2015, aucune valeur significativement supérieure au seuil de retombées n'a été relevée. Pour l'été 2017, une hausse des niveaux d'As est observée sur l'ensemble des stations, caractérisant ainsi un phénomène de dépôts généralisés sur le secteur d'étude sans lien direct avec l'activité de l'installation (pas de lien avéré avec les conditions d'exposition des stations). Depuis 2018,

Rapport 23-RA-01-LS-06 Page 16 / 6

les teneurs en As sont restées conformes aux valeurs attendues hors influence industrielle, dans la gamme basse à médiane des valeurs historiques, à l'exception de deux valeurs atteignant le seuil de retombées au printemps 2020 sur la station 7 et à l'automne 2021 sur la station 4. Pour cet élément, l'ensemble des concentrations est nettement en-deçà du seuil sanitaire de 2,27 mg/kg de MS.

■ Cas du cadmium (Cd)

Pour le Cd, le seuil de vigilance est fixé à 0,06 mg/kg MS. Le seuil de retombées significatives est de 0,12 mg/kg de MS. Il existe par ailleurs un seuil sanitaire à 1,14 mg/kg de MS provenant de la directive 2002/32 modifiée par le règlement UE 2015/186 fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation des animaux. Ce seuil sanitaire n'est qu'indicatif car, dans les environs immédiats du site EveRé, aucune culture pour l'alimentation animale n'est réalisée.

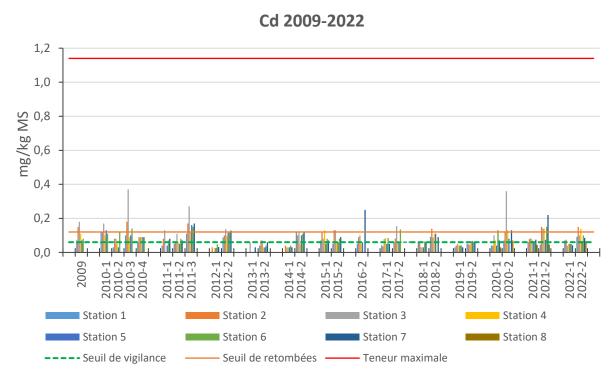


Figure 5. Concentrations en cadmium (Cd) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

À l'exception des rares valeurs plus marquées (station 3 en automne 2010, 2011 et 2020 et station 7 en automne 2016), les teneurs en Cd dans les graminées fluctuent autour du seuil de vigilance. Ce constat reflète le contexte industriel du domaine d'étude, sans révéler d'impact récurrent en lien avec EveRé. Depuis 2012, la majorité des valeurs sont conformes aux valeurs mesurées lors de l'état initial de 2009. Depuis 2020, l'imprégnation moyenne des stations d'impact potentiel est plus marquée à l'automne qu'au printemps.

La totalité des teneurs en Cd dans les graminées sont très nettement inférieures au seuil sanitaire de 1,14 mg/kg de MS fourni à titre indicatif pour l'alimentation animale.

Rapport 23-RA-01-LS-06 Page 17 / 6

■ Cas du cobalt (Co)

Pour le Co, le seuil de vigilance est fixé à 0,68 mg/kg MS. Le seuil de retombées significatives défini pour le cobalt est de 1,29 mg/kg de MS.

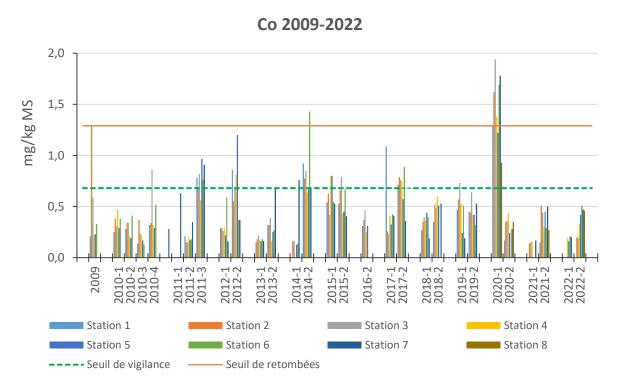


Figure 6. Concentrations en cobalt (Co) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

L'évolution des teneurs en Co apparait hétérogène entre les années et les campagnes de mesures depuis le début de la surveillance. Même si des valeurs plus marquées que la référence pour la typologie témoin ont pu être observées régulièrement, s'approchant ponctuellement du seuil de retombées, les teneurs en Co sont restées inférieures à cette limite jusqu'en 2019. Au printemps 2020, les niveaux de Co dans les graminées ont été plus élevés que lors des campagnes précédentes. Sur les stations d'impact, le seuil de retombées a été dépassé pour la première fois depuis le début de la surveillance. Toutefois, les concentrations plus élevées ont été mesurées sur l'ensemble des stations, y compris sur les deux sites témoins, suggérant un phénomène de dépôt généralisé sur le domaine d'étude, sans lien direct avec l'UVE. Les résultats de la campagne d'automne 2020 montrent un retour à la normale des teneurs en Co, à des niveaux conformes aux valeurs repères témoin. Les résultats des années 2021 et 2022 viennent confirmer ce constat : toutes les concentrations mesurées sur la zone d'étude sont inférieures au seuil de vigilance.

Rapport 23-RA-01-LS-06 Page 18 / 69

■ Cas du chrome (Cr)

Pour le Cr, le seuil de vigilance est fixé à 0,40 mg/kg MS. Le seuil de retombées significatives est de 0,76 mg/kg de MS.

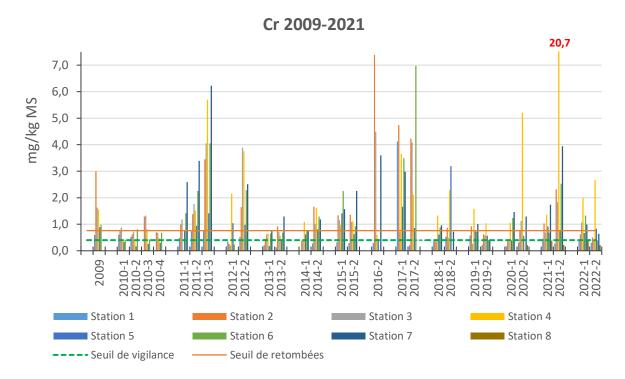


Figure 7. Concentrations en chrome (Cr) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

Des valeurs supérieures au seuil de retombées significatives sont observées depuis le début des campagnes sur l'ensemble des stations et ce, dès 2009 avant même le démarrage de l'exploitation du site EveRé. Les périodes 2011-2012, 2016-2017 et 2021 concentrent les dépôts de Cr les plus marquées. Les campagnes réalisées en 2022 mettent en avant une baisse des concentrations par rapport à celle d'automne 2022, mais les valeurs demeurent élevées, notamment sur la station 4.

Les dépôts en Cr, parfois importants, sont observés de manière récurrente sur les stations 2, 3, 4, 6 et 7, sans corrélation avec l'exposition potentielle des stations aux vents en provenance d'EveRé. À l'exception d'une valeur forte en été 2017, la station 1, témoin local situé en périphérie de la ZIP, est la moins impactée par des retombées de Cr. Ces résultats semblent donc traduire un phénomène de dépôt généralisé en Cr sur la zone industrialo-portuaire de Fos-sur-Mer, mais aucun lien direct et exclusif avec l'activité d'EveRé ne peut être mis en évidence.

Rapport 23-RA-01-LS-06 Page 19 / 6

■ Cas du cuivre (Cu)

Pour le Cu, le seuil de vigilance est fixé à 4,2 mg/kg MS. Le seuil de retombées significatives est de 11,3 mg/kg de MS.

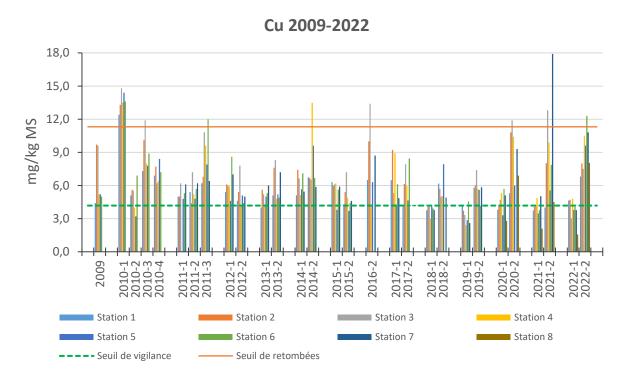


Figure 8. Concentrations en cuivre (Cu) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

Les niveaux de dépôts en Cu les plus importants ont été relevés début 2010. Depuis cette campagne, les teneurs en Cu affichent une certaine homogénéité d'une station et d'une année à l'autre. Des valeurs ponctuellement plus marquées sont observées. Celles-ci ne peuvent pas être mises en relation avec l'activité du site d'EveRé mais elles excèdent dans certains cas le seuil de retombées significatives (station 4 en 2014, station 3 en 2016 et 2021, station 7 en 2021 et station 6 en 2022). Depuis 2020, les campagnes automnales font apparaître des niveaux Cu nettement supérieurs à ceux relevés lors des campagnes printanières et fluctuant autour du seuil de retombées significatives.

Les résultats des campagnes de surveillance traduisent des retombées en Cu attendues en zone industrielle mais qui n'indiquent pas d'impact spécifique de l'UVE.

■ Cas du mercure (Hg)

Pour le Hg, le seuil de vigilance est fixé à 0,03 mg/kg MS. Le seuil de retombées significatives pour cet élément est de 0,05 mg/kg de MS. Il existe par ailleurs un seuil sanitaire fixé également à 0,11 mg/kg de MS provenant de la directive 2002/32 modifiée par le règlement UE 2015/186 fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation des animaux. Ce seuil sanitaire n'est qu'indicatif car, dans les environs immédiats du site EveRé, aucune culture pour l'alimentation animale n'est réalisée.

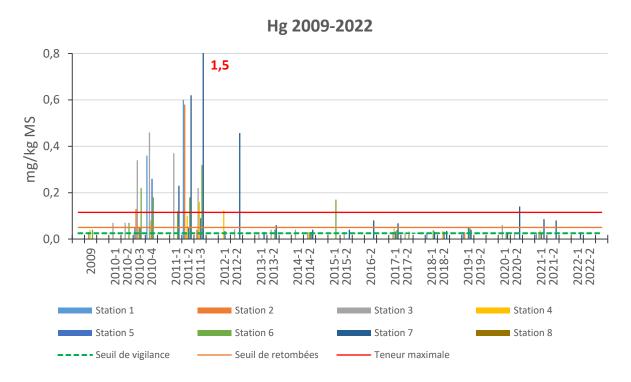


Figure 9. Concentrations en mercure (Hg) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

L'étude initiale conduite en 2009 faisait état de teneurs en mercure faibles, proches ou inférieures à la limite de quantification de cet élément. Entre 2010 et 2011, des valeurs marquées ont été observées, excédant le seuil de retombées correspondant et la valeur réglementaire pour les fourrages. Pour autant, aucun lien direct et exclusif n'a pu être fait avec le site EveRé, ce qui suggère l'existence probable d'autres sources d'émissions ponctuelles dans la zone d'étude, en lien avec son contexte industriel.

Depuis 2012, la situation s'est nettement améliorée avec des valeurs qui s'apparentent à celles attendues en zone de fond. Des valeurs supérieures au seuil de retombées ont été recensées en 2012 (stations 4 et 7), en 2015 (station 6) et en 2020 et 2021 (station 7). Hormis ces cas isolés, les teneurs en Hg restent inférieures au seuil de retombées significatives fixé à 0,11 mg/kg de MS.

Rapport 23-RA-01-LS-06 Page 21 / 6

■ Cas du manganèse (Mn)

Pour le Mn, le seuil de vigilance est fixé à 116 mg/kg MS. Le seuil de retombées significatives du manganèse est fixé à 219 mg/kg de MS.

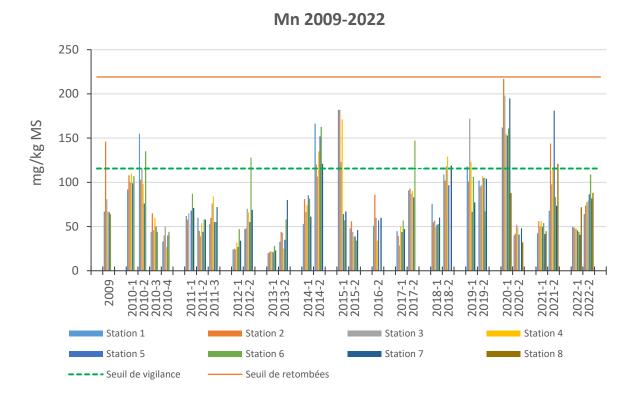


Figure 10. Concentrations en manganèse (Mn) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Les teneurs en Mn dans les graminées mesurées depuis le début des campagnes de surveillance sont toutes inférieures au seuil de retombées pour cet élément, fluctuant autour des niveaux observés lors de l'état initial en 2009. Quelques valeurs plus marquées sont observées ponctuellement mais sans relation directe avec l'activité d'EveRé.

Les concentrations, plus marquées, obtenues lors des campagnes de printemps 2020 et d'automne 2021 ne sont pas observées en 2022. Cette année, les teneurs sont en effet toutes inférieures au seuil de vigilance caractéristique d'une situation hors influence industrielle.

Aucun impact de l'activité des installations ne peut être mis en évidence sur la zone d'étude en termes de retombées de Mn et par le biais de la méthode de biosurveillance employée.

■ Cas du nickel (Ni)

Pour le Ni, le seuil de vigilance est fixé à 5,6 mg/kg MS. Le seuil de retombées significatives pour le nickel est de 10,6 mg/kg de MS.

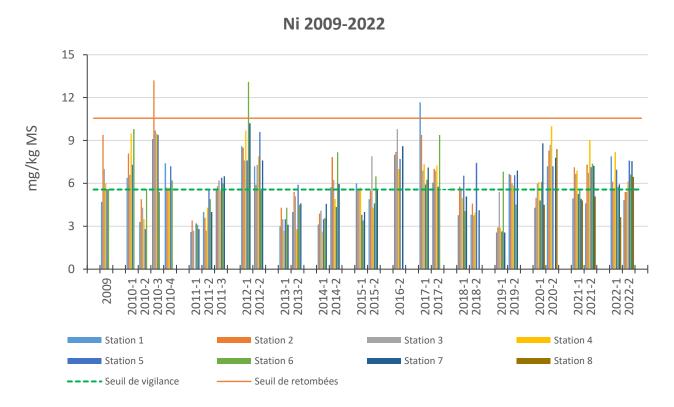


Figure 11. Concentrations en nickel (Ni) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Depuis 2009, les teneurs en Ni dans les graminées fluctuent autour de la valeur haute de la gamme repère témoin. Quelques valeurs plus marquées ont été relevées en 2010, 2012 et 2017, mais elles restent inférieures au seuil de retombées significatives, en tenant compte l'incertitude analytique.

Pour les campagnes de printemps et d'automne 2022, les teneurs en Ni mesurées dans les graminées sont dans la gamme médiane des valeurs historiques et inférieures au seuil de retombées.

Les résultats des campagnes de biosurveillance ne révèlent pas de dépôts significatifs de Ni dans l'environnement du site d'EveRé.

■ Cas du Plomb (Pb)

Pour le Pb, le seuil de vigilance est fixé à 0,30 mg/kg MS. Le seuil de retombées significatives est de 0,56 mg/kg de MS. Il existe par ailleurs un seuil sanitaire à 34,1 mg/kg de MS provenant de la directive 2002/32 modifiée par le règlement UE 2015/186 fixant les teneurs maximales pour les substances et produits indésirables dans l'alimentation des animaux. Ce seuil sanitaire reste indicatif car, dans les environs immédiats du site EveRé, aucune culture pour l'alimentation animale n'est réalisée.

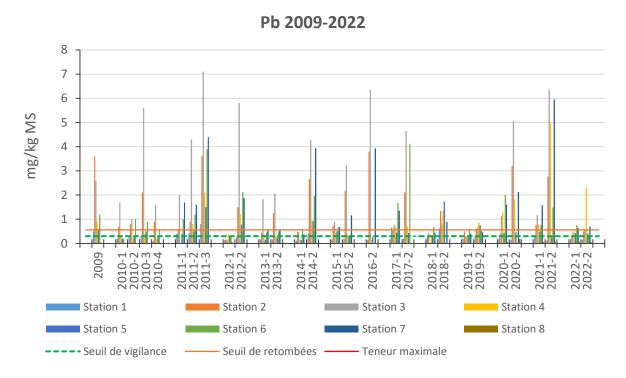


Figure 12. Concentrations en plomb (Pb) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Les niveaux de Pb dans les graminées sont régulièrement supérieurs au seuil de retombées significatives défini pour cet élément, notamment sur les stations 2, 3 et 7. Cependant, les teneurs observées et leurs variations ne témoignent pas d'un changement de la situation par rapport à l'état initial réalisé en 2009.

Malgré une valeur excédant le seuil de retombées significatives sur la station 4, les résultats de l'année 2022 marquent un retour à des niveaux plus faibles après les deux années de hausse consécutives constatées en 2020 et 2021 mais restent révélateurs d'un contexte industriel.

L'ensemble des teneurs en Pb de 2009 à 2022 est très nettement en-deçà du seuil sanitaire de 34,1 mg/kg de MS, appliqué ici à titre indicatif.

Rapport 23-RA-01-LS-06 Page 24 / 69

■ Cas de l'antimoine (Sb)

Pour le Sb, le seuil de vigilance est fixé à 0,13 mg/kg MS. Le seuil de retombées est fixé à 0,24 mg/kg de MS.

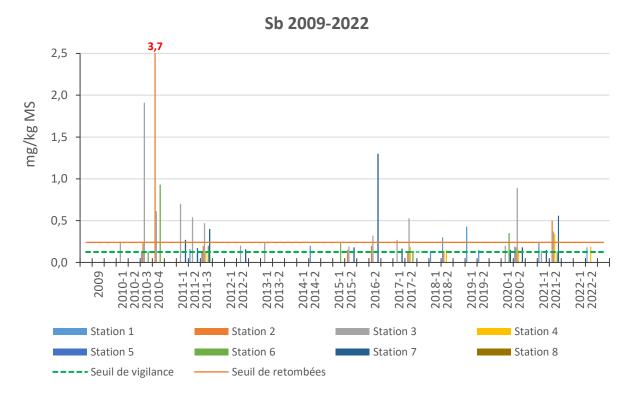


Figure 13. Concentrations en antimoine (Sb) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Le Sb est quantifié de manière sporadique depuis le début des campagnes de mesures. Lorsqu'il est quantifié, les niveaux restent pour la plupart conformes à ceux attendues en zone non impactée par une source industrielle. Quelques teneurs hautes, supérieures au seuil de retombées significatives ont été relevées en 2010, 2016 et 2020. La campagne d'automne 2021 a été marquée par une imprégnation globale des stations d'impact potentiel élevée en regard de l'historique. En 2022, le Sb a été quantifié sur seulement deux stations lors de la campagne d'automne, à un niveau n'indiquant pas de retombées significatives.

Rapport 23-RA-01-LS-06 Page 25 / 6

■ Cas de l'étain (Sn)

Pour le Sn, le seuil de vigilance est fixé à 0,13 mg/kg MS. Le seuil de retombées est fixé à 0,24 mg/kg de MS.

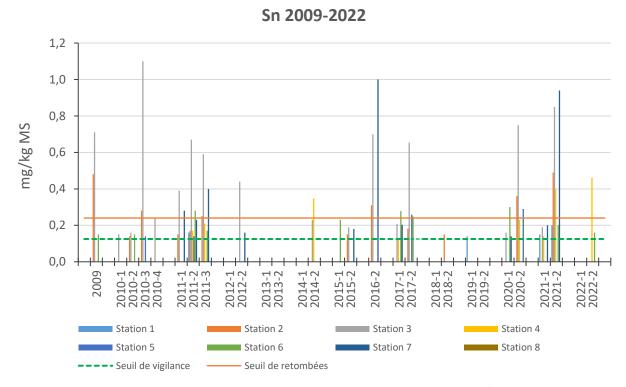


Figure 14. Concentrations en étain (Sn) mesurées dans les graminées depuis 2009 (en mg/kg de MS)

Depuis 2009, l'étain a été quantifié de manière ponctuelle sur le réseau de mesures, avec une majorité de concentrations inférieures à la limite de quantification fixée à 0,125 mg/kg de MS. Il a toutefois été quantifié de manière régulière sur la station 3. Le Sb a été détecté plus largement en 2020 et 2021, particulièrement en automne, avec notamment des valeurs marquées sur les stations 2, 3, 4 et 7. Il n'a été détecté qu'à deux reprises sur les deux campagnes réalisées en 2022. La comparaison à l'état initial ne révèle toutefois aucun impact d'EveRé pour cet élément.

■ Cas du thallium (TI)

Le thallium n'est que rarement quantifié et aucune référence ne permet d'en évaluer l'importance lorsqu'il est décelé. Les valeurs observées après la mise en service du site restent inférieures à la limite de quantification analytique, y compris pour les campagnes d'été et d'automne 2022. Aucun dépôt de thallium n'est donc mis en évidence sur le domaine d'étude depuis le début de la surveillance.

(B) Rapport 23-RA-01-LS-06 Page 26 / 6

■ Cas du vanadium (V)

Pour le V, le seuil de vigilance est fixé à 0,2 mg/kg MS. Le seuil de retombées significatives du vanadium est fixé à 0,38 mg/kg de MS.

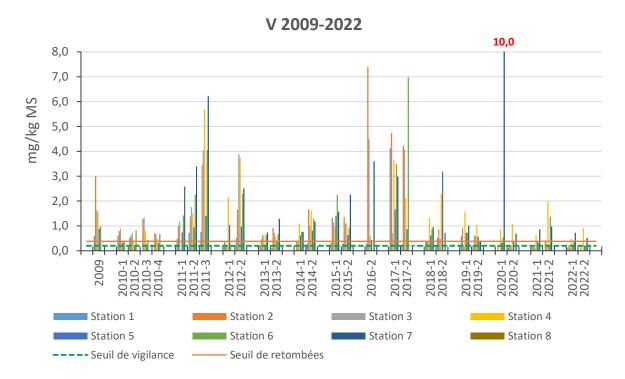


Figure 15. Concentrations en vanadium (V) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

Depuis le début du programme de surveillance, pour une même campagne, les teneurs en V mesurées dans les graminées varient de manière sensible d'une station à l'autre, sans corrélation claire avec les conditions d'exposition des stations. Cette situation était observée dès l'état initial en 2009, où on relevait des dépôts plus élevés au droit des stations 2, 3 et, dans une moindre mesure, 7. Après le démarrage de l'exploitation des installations EveRé, les dépôts les plus marqués ont été enregistrés en 2011-2012 et en 2017. On note que ces deux périodes correspondent aux campagnes au cours desquelles des retombées significatives ont été détectées sur la zone d'étude pour les éléments As et Cr. Ce constat semble témoigner d'épisodes de dépôts métalliques mixtes sur le secteur d'étude, pour lesquels aucun lien direct et exclusif avec le fonctionnement d'EveRé ne peut être établi et pouvant provenir d'émetteurs multiples présents sur la ZIP de Fos-sur-Mer.

Depuis 2018, hormis quelques dépassements sporadiques du seuil de retombées sur les stations 4 et 5 en 2018 et surtout sur la station 7 en automne 2020, les teneurs en V mesurées dans les graminées sont revenues à des niveaux équivalents voire inférieurs à ceux de l'état initial de 2009. Les résultats en 2022 confirment cette tendance à l'amélioration.

Rapport 23-RA-01-LS-06 Page 27 / 6

■ Cas du zinc (Zn)

Pour le Zn, la valeur haute de la gamme repère pour la typologie témoin est fixée à 30,9 mg/kg MS. Le seuil de retombées significatives est de 58,5 mg/kg de MS.

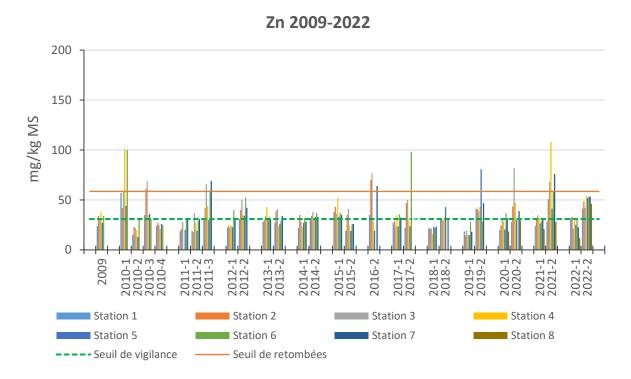


Figure 16. Concentrations en zinc (Zn) dans les graminées mesurées depuis 2009 (en mg/kg de MS)

L'état initial défini en 2009 montrait des teneurs en Zn dans les graminées, conformes aux valeurs attendues en zone non impactée, inférieures au seuil indicateur de retombées significatives pour ce métal et relativement homogènes d'une station à l'autre. Depuis 2009, les valeurs mesurées se maintiennent globalement à des niveaux équivalents. On relève tout de même des teneurs plus marquées, notamment en 2010, 2011, 2016, 2017, 2019, 2020 et 2021, mais ces dépôts ponctuels restent de l'ordre de grandeur du seuil de retombées et ne montrent aucune corrélation claire avec les conditions d'exposition des stations vis-à-vis des émissions d'EveRé.

Les concentrations en Zn enregistrées au printemps 2022 se situent dans la gamme moyenne des valeurs mesurées sur le domaine d'étude depuis 2009. Celles observées lors de la campagne d'automne 2022 montrent une augmentation globale, qui reste limitée puisqu'aucune valeur ne dépasse le seuil de retombées significatives.

6. CONCLUSION

Un programme de mesures d'impact sur l'environnement de retombées de polluants a été engagé par le Centre de Traitement Multifilière des déchets ménagers EveRé, situé sur la commune de Fos-sur-Mer. Ce programme prévoit d'évaluer les retombées de dioxines/furanes et métaux dans l'environnement de l'installation. L'étude est fondée sur l'exposition de plantes préalablement cultivées sous serre puis exposées pendant un temps défini sur différentes stations, selon les prescriptions de la norme NF X 43-901. La comparaison des résultats à des valeurs repères permet ensuite de fournir un avis sur le niveau de contamination observé sur les différentes stations de mesure.

Dans le cadre de la mise en service de l'installation, l'exploitant a, conformément à son arrêté d'autorisation d'exploiter, effectué un état initial de l'environnement à l'été 2009, avant que ne commencent les premiers essais. Ces mesures ont été réitérées annuellement de 2010 à 2022 après la mise en service de l'installation selon le même protocole, afin d'évaluer son impact potentiel sur l'environnement. L'opération a été menée 4 fois en 2010, 3 fois en 2011 et 2 fois par an depuis 2012, au printemps et en automne.

Le présent rapport s'intéresse aux résultats de la campagne d'automne 2022 conduite du 25 octobre au 24 novembre sur huit stations déployées dans l'environnement d'EveRé et s'attache à replacer ces résultats dans l'historique des données recueillies depuis le début de la surveillance en 2009. La période d'exposition des graminées s'est déroulée en conditions normales de fonctionnement de l'installation.

Pour les PCDD/F comme pour les métaux, les programmes de surveillance réalisés depuis 2009 rendent compte d'une situation très fluctuante dans le temps, ponctuée par des teneurs supérieures aux valeurs interprétatives symptomatiques d'un environnement à forte dominante industrielle. L'analyse des résultats au regard de la localisation des stations impactées et de leur exposition potentielle vis-àvis de l'installation ne permet pas d'établir un lien direct et exclusif avec l'activité d'EveRé. Les dépôts de contaminants observés sur le secteur d'étude traduisent probablement le contexte industriel multisources du domaine d'études.

Les résultats de la campagne d'automne 2022 montrent des teneurs en PCDD/F plus marquées dans la zone d'influence de l'UVE en comparaison aux sites témoins, particulièrement sur la station 3, située directement au sud de l'installation. Concernant les métaux, les résultats de l'automne 2022 traduisent une amélioration globale de la situation par rapport aux deux années de hausses observées en 2020 et 2021. Les teneurs métalliques restent cependant élevées, notamment pour le Pb, et caractéristiques d'une zone fortement industrialisée.

ANNEXES

Annexe 1 - Méthodologie d'établissement des valeurs repères	31
Annexe 2 - Rose des vents enregistrés par la station Météo-France d'Istres du 25 octobre au 24 novembre 2022	34
Annexe 3 - Résultats d'analyses des PCDD/F dans les graminées pour la campagne d'automne 202 (période d'exposition du 25 octobre au 24 novembre 2022)	
Annexe 4 - Évolution des teneurs en PCDD/F dans les graminées dans l'environnement d'EveRé depuis 2009	44
Annexe 5 - Résultats d'analyses de métaux dans les graminées pour la campagne d'automne 2022 (période d'exposition du 25 octobre au 24 novembre 2022)	
Annexe 6 - Évolution des teneurs en métaux dans les graminées dans l'environnement d'EveRé depuis 2009	60

Annexe 1 - Méthodologie d'établissement des valeurs repères

Valeurs repères pour la validation du témoin local

Le premier niveau d'interprétation des résultats d'une campagne de surveillance de l'impact d'une installation sur l'environnement consiste à comparer les données obtenues sur des stations d'impact potentiel, exposées aux émissions de l'installation objet de la surveillance, à celles observées sur une ou plusieurs stations représentatives de l'environnement local témoin², dont la typologie doit au préalable être confirmée.

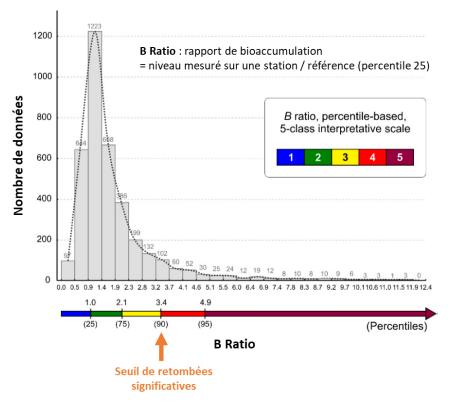
Les gammes de valeurs repères permettant de valider la typologie de la station (ou des stations) représentative(s) de l'environnement local témoin sont déterminées selon la procédure décrite par la norme XP X43-910 (AFNOR, juin 2020 - Qualité de l'air - Lignes directrices pour l'établissement de valeurs repères en biosurveillance de l'air). En résumé, les valeurs repères sont établies par le traitement statistique des données collectées par un utilisateur des normes de biosurveillance au niveau de stations d'une typologie donnée au cours des quatre dernières années civiles, avec un minimum de 20 données. En l'occurrence, les valeurs repères s'appliquent exclusivement à la typologie « site d'exposition témoin », telle que définie dans la norme XP X43-910 : site d'exposition, à l'intérieur de l'aire d'étude, admis comme étant exempt de l'impact de toute source engageant le(s) contaminant(s) recherché(s), tout en respectant le même contexte biogéographique.

Cette procédure de validation vise à permettre à l'utilisateur de vérifier que les résultats issus du ou des site(s) d'exposition témoin d'une campagne de biosurveillance sont en accord avec un référentiel local (régional ou national). Le cas échéant, il permet d'alerter l'utilisateur sur une particularité locale qui doit conduire à une réévaluation de la typologie de l'emplacement et/ou à une recherche des sources d'exposition supplémentaires pouvant expliquer cette différence : particularité géologique locale, pollution historique, etc. De plus, l'application généralisée de cette norme doit permettre d'harmoniser les pratiques de construction de ces référentiels entre les différentes structures utilisatrices des normes de biosurveillance.

BioMonitor a mis en œuvre la norme XP X43-910 pour les méthodes suivantes :

- o NF X 43-901 (2008): biosurveillance des retombées par les ray-grass;
- NF X 43-902 (2008) / NF EN 16414 (2014): biosurveillance des retombées par les bryophytes;
- o NF X 43-904 (2013) : biosurveillance des retombées par les lichens ;
- VDI 3957/F3 (2008): biosurveillance active des retombées par les choux frisés.

Même si le domaine d'application de la norme XP X43-910 est limité à la biosurveillance, BioMonitor l'a également mise en œuvre pour la méthode de mesure des retombées atmosphériques totales au moyen de collecteurs de précipitations (NF X43-014 (2017): détermination des retombées


² INERIS (2021), Guide sur la surveillance dans l'air autour des installations classées - Retombées des émissions atmosphériques, Verneuilen-Halatte: Ineris - 201065 -2172207 - v1.0, décembre 2021.

atmosphériques totales), qui est proche, du point de vue conceptuel, des méthodes de biosurveillance citées, toutes dédiées à l'évaluation des niveaux de dépôts atmosphériques.

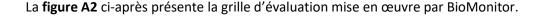
Valeurs repères pour l'interprétation des résultats d'une campagne de surveillance

Une fois le témoin local validé, les résultats d'une campagne de surveillance sont interprétés en comparant les valeurs mesurées sur les stations d'impact potentiel à celles relevées au niveau du témoin local. En cas de dépassement de la référence locale, il n'existe pas, pour les méthodes de surveillance des retombées, de valeurs réglementaires ou de seuils basés sur des travaux récents permettant de qualifier le degré d'impact observé. Pour répondre à ce besoin et permettre une interprétation approfondie des données de surveillance environnementale à l'aide d'outils standardisés et actualisés, BioMonitor a appliqué une méthode de traitement de données décrites par Cecconi et al. (2019)³. Cette méthode, appliquée initialement à la bioaccumulation des métaux dans les lichens, peut être étendue à toute méthode de biosurveillance basée sur la bioaccumulation. Elle repose sur le traitement d'un grand nombre de données (tous polluants confondus) et permet d'établir une échelle de bioaccumulation basée sur un rapport sans dimension. Le principe de la méthode est illustré sur la figure A1 ci-après.

Figure A1. Exemple de distribution de données de rapport de bioaccumulation et d'échelle de bioaccumulation de métaux dans les lichens, d'après Cecconi et al. (2019)

Rapport 23-RA-01-LS-06

Page 32 / 69


³ Cecconi et al. (2019). New interpretative scales for lichen bioaccumulation data: The italian proposal. Atmosphere, 10(3), 1–19.

BioMonitor a appliqué cette procédure aux données obtenues à l'aide des méthodes suivantes :

- o NF X 43-901 (2008) : biosurveillance des retombées par les ray-grass ;
- o NF X 43-902 (2008) / NF EN 16414 (2014) : biosurveillance des retombées par les bryophytes ;
- o NF X 43-904 (2013) : biosurveillance des retombées par les lichens ;
- VDI 3957/F3 (2008): biosurveillance active des retombées par les choux frisés.

A l'instar de la norme XP X 43-910 et pour les mêmes raisons d'homologie conceptuelle, la méthode de Cecconi *et al.* (2019), dédiée à la biosurveillance, a également été appliquée aux mesures des retombées atmosphériques totales au moyen de collecteurs de précipitations (norme NF X 43-014, novembre 2017).

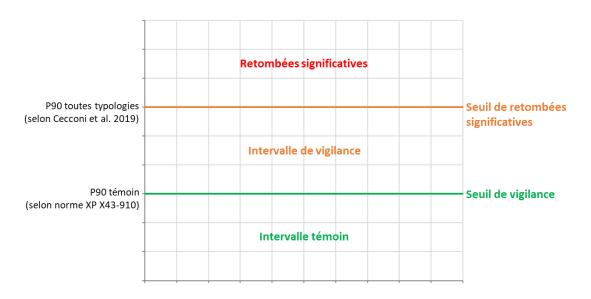
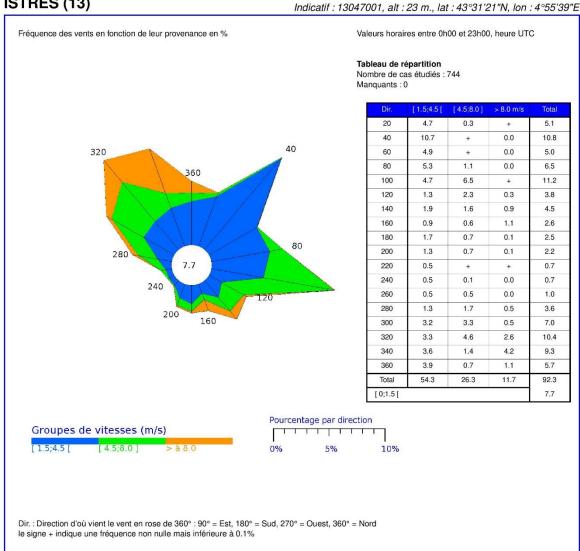


Figure A2. Grille d'interprétation des données de retombées atmosphériques par BioMonitor

La grille d'évaluation de BioMonitor est composée de deux seuils. Le premier seuil (seuil de vigilance) correspond à la valeur haute de la gamme « témoin » déterminée selon la norme XP X 43-910. Les valeurs inférieures à ce seuil (en tenant compte de l'incertitude analytique) sont conformes aux valeurs attendues hors influence industrielle. Le second seuil (seuil de retombées significatives) correspond au percentile 90 de la distribution toutes typologies confondues selon Cecconi et al. (2019). Les valeurs dépassant ce seuil (en tenant compte de l'incertitude analytique) traduisent des retombées nettement supérieures au niveau de fond attendu hors influence industrielle, dont la source doit être confirmée par des investigations complémentaires. Les valeurs dépassant le seuil de vigilance mais qui restent inférieures au seuil de retombées significatives (en tenant compte de l'incertitude analytique) indiquent des dépôts plus marqués qu'attendus hors influence industrielle mais qui ne traduisent pas nécessairement un impact environnemental préoccupant. Les valeurs comprises dans l'intervalle de vigilance sont à surveiller, notamment dans le cas d'une tendance à la hausse, d'un caractère récurrent ou d'un changement d'usage des milieux.

Rapport 23-RA-01-LS-06 Page 33 / 6

Annexe 2 - Rose des vents enregistrés par la station Météo-France d'Istres du 25 octobre au 24 novembre 2022



ROSE DES VENTS

Vent horaire à 10 mètres, moyenné sur 10 mn

Année 2022 - Du 25 OCTOBRE au 24 NOVEMBRE

ISTRES (13)

Edité le : 25/11/2022 dans l'état de la base

Page 1/1

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

> **Division Services** 28, Boulevard Gonthier d"Andernach - 67403 Illkirch-Graffenstaden Tel: 03 88 40 42 31 - Email: climatologie.nord-est@meteo.fr

Rapport 23-RA-01-LS-06 Page 34 / 69

Annexe 3 - Résultats d'analyses des PCDD/F dans les graminées pour la campagne d'automne 2022 (période d'exposition du 25 octobre au 24 novembre 2022)

4, nue de Bort-lès-Orgues ZAC de Grimont / BP 40 010 57 070 SAINT JULIEN-LES-METZ Tél: 03 87,50,60,70 Fax: 03 87,50,81,31

RAPPORT D'ANALYSES BERL022_PCD_R1

> BIOMONITOR Monsieur Matthieu BAGARD 25, rue Anatole France

54530 PAGNY/MOSELLE

Vos références : N° 22-LC-152 du 25/11/2022

Norme: Méthode interne MOp C-4/57

Technique: HRGC_HRMS

Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Date	Description	Validé par
13/12/2022	RAPPORT FINAL	Yan REBMEISTER

Responsable d'analyses

La reproduction de ce rapport d'analyses n'est autorisée que sous sa forme intégrale. Il comporte 9 page(s) et 0 annexe(s). Le présent rapport ne concerne que les objets soumis à essais.

MicroPolluants Technologie SA

Page 1 sur 9

Référence Interne				BERK00	53	72	
Référence Externe			22/EVE/11/RG/01				
Nature			Bio-indicateur / Végétaux				
Taux de matière sèche (%)			12,2				
Masse de matière sèche an	alysée (g)		5,032				
Volume final après concer	ntration (μl)			10			
Volume d'extrait injecté (µ	ıl)			2			
Congénère	Concentration	TEF	TEQ	TEQ	TEQ	% Rec. 13C	
	(pg/g de MS)	(WHO 1998)	(min)	(med)	(max)		
2,3,7,8 TCDD	< 0,069	1	0,000	0,035	0,069	88	
1,2,3,7,8 PeCDD	0,178	1	0,178	0,178	0,178	62	
1,2,3,4,7,8 HxCDD	0,350	0,1	0,035	0,035	0,035	65	
1,2,3,6,7,8 HxCDD	0,968	0,1	0,097	0,097	0,097	74	
1,2,3,7,8,9 HxCDD	0,578	0,1	0,058	0,058	0,058	/_	
1,2,3,4,6,7,8 HpCDD	4,350	0,01	0,044	0,044	0,044	55	
OCDD	3,892	0,0001	0,000	0,000	0,000	35	
2,3,7,8 TCDF	1,040	0,1	0,104	0.104	0,104	69	
1,2,3,7,8 PeCDF	0,167	0,05	0,008	0,008	0,008	1	
2,3,4,7,8 PeCDF	0,370	0,5	0.185	0,185	0,185	57	
1,2,3,4,7,8 HxCDF	0,314	0,1	0.031	0.031	0.031	66	
1,2,3,6,7,8 HxCDF	0,443	0,1	0,044	0,044	0,044	66	
2,3,4,6,7,8 HxCDF	0,487	0,1	0,049	0,049	0.049	55	
1,2,3,7,8,9 HxCDF	< 0.088	0,1	0,000	0,004	0,009	/	
1,2,3,4,6,7,8 HpCDF	2,495	0.01	0,025	0.025	0.025	53	
1,2,3,4,7,8,9 HpCDF	< 0.110	0.01	0,000	0,001	0,001	/	
OCDF	0,480	0,0001	0,000	0,000	0,000	31	
TOTAL TEQ WHO-1998	8 (pg/g de MS)		0,858	0,898	0,937		
TOTAL TEQ WHO-2003	5 (pg/g de MS)		0,782	0,821	0,861		
TOTAL TEQ NATO (pg			0,773	0,813	0,852		
TOTAL TEQ WHO-1998			0,105	0,110	0,114	-	
TOTAL TEQ WHO-2003			0,095	0,100	0,105		
TOTAL TEQ NATO (pg			0,094	0,099	0,104	-	
Total TCDD	9,392			2004			
Total PeCDD	21,711						
Total HxCDD	26,797						
Total HpCDD	12,929						
Total PCDD	74,7						
Total TCDF	12,226						
Total PeCDF	7,071						
Total HxCDF	4,950						
Total HpCDF	2,785						
Total PCDF	27,5						
Marquage de l'extrait avan	t injection		Le 06	/12/2022 à 11	:00		
Analyse par GC/HRMS	and a state of the			/12/2022 à 01			

 $\underline{L\acute{e}gende} : < valeur (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

Référence Interne				BERK00	54	72	
Référence Externe			22/EVE/11/RG/02				
Nature			Bio-indicateur / Végétaux				
Taux de matière sèche ((%)		11,3				
Masse de matière sèche	analysée (g)		3,073				
Volume final après con	centration (µl)			10			
Volume d'extrait injecte	έ (μl)			2		-	
Congénère	Concentration	TEF	TEQ	TEQ	TEQ	% Rec. 13C	
	(pg/g de MS)	(WHO 1998)	(min)	(med)	(max)		
2,3,7,8 TCDD	< 0,322	1	0,000	0,161	0,322	82	
1,2,3,7,8 PeCDD	< 0,446	1	0,000	0,223	0,446	60	
1,2,3,4,7,8 HxCDD	< 0,350	0,1	0,000	0,018	0,035	58	
1,2,3,6,7,8 HxCDD	0,492	0,1	0,049	0,049	0,049	73	
1,2,3,7,8,9 HxCDD	< 0,349	0,1	0,000	0,017	0,035	/	
1,2,3,4,6,7,8 HpCDD	3,902	0,01	0,039	0,039	0,039	57	
OCDD	4,316	0,0001	0,000	0,000	0,000	45	
2,3,7,8 TCDF	0,437	0,1	0.044	0.044	0.044	62	
1,2,3,7,8 PeCDF	0,828	0.05	0,041	0,041	0,041	/	
2,3,4,7,8 PeCDF	1,062	0,5	0,531	0,531	0,531	56	
1,2,3,4,7,8 HxCDF	1,920	0,1	0,192	0,192	0,192	56	
1,2,3,6,7,8 HxCDF	1,506	0,1	0,151	0,151	0,151	67	
2,3,4,6,7,8 HxCDF	0,926	0,1	0,093	0.093	0.093	57	
1,2,3,7,8,9 HxCDF	< 0,422	0,1	0,000	0,021	0,042	/	
1,2,3,4,6,7,8 HpCDF	3,794	0.01	0,038	0.038	0,038	57	
1,2,3,4,7,8,9 HpCDF	0,810	0,01	0,008	0,008	0,008	/	
OCDF	5,715	0,0001	0,001	0,001	0,001	39	
	The state of the s		House Suppression			-	
TOTAL TEQ WHO-1			1,187	1,627	2,067		
TOTAL TEQ WHO-2			0,960	1,400	1,840		
TOTAL TEQ NATO	(pg/g de MS)		1,196	1,524	1,853		
TOTAL TEQ WHO-1	998 (pg/g de MF)		0,134	0,183	0,233		
TOTAL TEQ WHO-2	005 (pg/g de MF)		0,108	0,158	0,207		
TOTAL TEQ NATO	(pg/g de MF)		0,135	0,172	0,209		
Total TCDD	< 7,080						
Total PeCDD	12,839						
Total HxCDD	16,550						
Total HpCDD	18,085						
Total PCDD	51,790 < Total < 58,870						
Total TCDF	< 15,099						
Total PeCDF	< 11,964						
Total HxCDF	11,057						
Total HpCDF	5,279						
Total PCDF	22,050 < Total < 49,112						
Marquage de l'extrait av	vant injection		Le 10	/12/2022 à 09	0:45	-	
Analyse par GC/HRMS				/12/2022 à 17			
you pur o carriero			2.0	, a 1			

 $\underline{L\acute{e}gende} : < valeur (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

Référence Interne			BERK065					
Référence Externe				22/EVE/11/F	RG/03			
Nature			Bio-indicateur / Végétaux					
Taux de matière sèche (%)			11,2					
Masse de matière sèche ana	lysée (g)			5,023		-		
Volume final après concent	ration (µl)			10				
Volume d'extrait injecté (µl	.)			2				
Congénère	Concentration (pg/g de MS)	TEF (WHO 1998)	TEQ (min)	TEQ (med)	TEQ (max)	% Rec. 13C		
2,3,7,8 TCDD	< 0,252	1	0,000	0,126	0,252	77		
1,2,3,7,8 PeCDD	0,917	1	0,917	0,917	0,917	56		
1,2,3,4,7,8 HxCDD	1,157	0,1	0,116	0,116	0,116	57		
1,2,3,6,7,8 HxCDD	3,363	0,1	0,336	0,336	0,336	76		
1,2,3,7,8,9 HxCDD	2,288	0,1	0,229	0,229	0,229	/		
1,2,3,4,6,7,8 HpCDD	12,749	0,01	0,127	0,127	0,127	60		
OCDD	12,596	0,0001	0,001	0,001	0,001	39		
2,3,7,8 TCDF	2,840	0,1	0,284	0,284	0,284	63		
1,2,3,7,8 PeCDF	1,651	0,05	0,083	0,083	0,083	/		
2,3,4,7,8 PeCDF	3,273	0,5	1,637	1,637	1,637	52		
1,2,3,4,7,8 HxCDF	2,392	0,1	0,239	0,239	0,239	60		
1,2,3,6,7,8 HxCDF	2,590	0,1	0,259	0,259	0,259	67		
2,3,4,6,7,8 HxCDF	2,892	0,1	0,289	0,289	0,289	54		
1,2,3,7,8,9 HxCDF	0,636	0,1	0,064	0,064	0,064	/		
1,2,3,4,6,7,8 HpCDF	6,409	0,01	0,064	0,064	0,064	60		
1,2,3,4,7,8,9 HpCDF	0,408	0,01	0,004	0,004	0,004	/		
OCDF	4,062	0,0001	0,000	0,000	0,000	35		
TOTAL TEQ WHO-1998	(pg/g de MS)		4,649	4,775	4,901	3		
TOTAL TEQ WHO-2005	(pg/g de MS)		3,965	4,091	4,217			
TOTAL TEQ NATO (pg/	g de MS)		4,206	4,332	4,458			
TOTAL TEQ WHO-1998	(pg/g de MF)		0,521	0,535	0,549	- 12		
TOTAL TEQ WHO-2005	(pg/g de MF)		0,444	0,458	0,472			
TOTAL TEQ NATO (pg/	g de MF)		0,471	0,485	0,499			
Total TCDD	61,900							
Total PeCDD	107,669							
Total HxCDD	113,158							
Total HpCDD	37,290							
Total PCDD	332,6							
Total TCDF	78,303							
Total PeCDF	46,559							
Total HxCDF	27,283							
Total HpCDF	9,039							
Total PCDF	165,2							
Marquage de l'extrait avant	injection		Le 10	/12/2022 à 09	9:45	***		
Analyse par GC/HRMS			Le 10	/12/2022 à 17	7:43			

 $\underline{L\acute{e}gende} \ \ \stackrel{<}{\cdot} \ \ valeur \ (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

MicroPolluants Technologie SA

Page 4 sur 9

Référence Interne			BERK066					
Référence Externe			22/EVE/11/RG/04					
Nature			Bio-indicateur / Végétaux 11,1 5,003					
Taux de matière sèche	(%)							
Masse de matière sèche	V 7							
Volume final après con				10				
Volume d'extrait injecte	3. (2				
	Concentration	TEF	TEO	TEQ	TEQ	0/ D 12G		
Congénère	(pg/g de MS)	(WHO 1998)	(min)	(med)	(max)	% Rec. 13C		
2,3,7,8 TCDD	< 0,168	1	0,000	0,084	0,168	80		
1,2,3,7,8 PeCDD	< 0,335	1	0,000	0,168	0,335	60		
1,2,3,4,7,8 HxCDD	< 0,503	0,1	0,000	0,025	0,050	52		
1,2,3,6,7,8 HxCDD	< 0,417	0,1	0,000	0,021	0,042	77		
1,2,3,7,8,9 HxCDD	< 0,501	0,1	0,000	0,025	0,050	/		
1,2,3,4,6,7,8 HpCDD	2,805	0,01	0,028	0,028	0,028	61		
OCDD	3,476	0,0001	0,000	0,000	0,000	50		
2,3,7,8 TCDF	1,079	0,1	0,108	0,108	0,108	67		
1,2,3,7,8 PeCDF	0,536	0,05	0,027	0,027	0,027	1		
2,3,4,7,8 PeCDF	< 0,303	0,5	0,000	0,076	0,152	56		
1,2,3,4,7,8 HxCDF	1,209	0,1	0,121	0,121	0,121	56		
1,2,3,6,7,8 HxCDF	0,847	0,1	0,085	0,085	0,085	69		
2,3,4,6,7,8 HxCDF	0,713	0,1	0,071	0,071	0,071	58		
1,2,3,7,8,9 HxCDF	< 0,357	0,1	0,000	0,018	0,036	/		
1,2,3,4,6,7,8 HpCDF	3,039	0,01	0,030	0,030	0,030	64		
1,2,3,4,7,8,9 HpCDF	0,435	0,01	0,004	0,004	0,004	/		
OCDF	7,339	0,0001	0,001	0,001	0,001	39		
TOTAL TEQ WHO-1	1998 (pg/g de MS)		0,475	0,892	1,308			
TOTAL TEQ WHO-2			0,467	0,853	1,239			
TOTAL TEQ NATO	400		0,485	0,818	1,150			
TOTAL TEQ WHO-1			0,053	0,099	0,145			
TOTAL TEQ WHO-2			0,052	0,095	0,138			
TOTAL TEQ NATO			0,054	0,091	0,128			
Total TCDD	4,904							
Total PeCDD	7,468							
Total HxCDD	10,083							
Total HpCDD	11,143							
Total PCDD	37,1							
Total TCDF	15,562							
Total PeCDF	< 8,473							
Total HxCDF	< 7,359							
Total HpCDF	4,778							
Total PCDF	27,679 < Total < 43,511							
Marquage de l'extrait a	vant injection		Le 10	/12/2022 à 09	0:45			
Analyse par GC/HRMS	S		Le 10	/12/2022 à 18	3:23			

 $\underline{L\acute{e}gende} : < valeur (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

Référence Externe Bio-indicateur / Végéraux Taux de matière séche (%) 11,5	Référence Interne				BERK00	67		
Nature Bio-indicateur / Végétaux Taux de matière sèche analysée (g) 5.006 Volume final après concentration (µl) 10 Volume d'extrait injecté (µl) TEQ TEQ TEQ TEQ TEQ TEQ Memoria de matière sèche analysée (g) 10 Volume final après concentration (µl) TEP TEQ MeRC. 1 2.3,7,8 TCDF 0.417 1 0,417 0,41 0,41 0,41 0,41 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.5</td> <td></td>						2.5		
Taux de matière sèche (%) 11,5 Masse de matière sèche analysèe (g) 5,006 Volume final après concentration (µI) 10 Volume d'extrait injecté (µI) 2 Congénère Concentration (pg/g de MS) TEF (Win) TEQ (min) (min) (min) (med) (max) % Rec. 1 2,3,7,8 TCDD <0,096								
Masse de matière sèche analysée (g) 5,006		<i>S</i>)		Die		, egetatan		
Volume final après concentration (μl) 10 2 2								
Volume d'extrait injecté (µI) TEF TEQ TEQ TEQ Mec. 1 TEQ TEQ (max) % Rec. 1 2.3,7,8 TCDD < 0,096 1 0,000 0,048 0,096 93 1,2,37,8 PcCDD 0,417 1 0,417 0,419 0,149 0,149 0,54 69 1,23,3,7,8 HxCDD 0,717 0,1 0,072 <		• 0						
Congénère Concentration (pg/g de MS) TEF (WHO 1998) TEQ (min) (med) TEQ (max) (max) Rec. 1 2,3,7,8 TCDD < 0,096								
Congenere Capy Ca		,	TEE	TFO	75.11	TFO	1,500 NO. 100	
1,2,3,7,8 PeCDD	Congénère						% Rec. 130	
1,2,3,4,7,8 HxCDD	2,3,7,8 TCDD	< 0,096		0,000	0,048	0,096	93	
1,2,3,6,7,8 HxCDD	1,2,3,7,8 PeCDD	0,417		0,417	0,417	0,417		
1,2,3,7,8,9 HxCDD	1,2,3,4,7,8 HxCDD	0,537	0,1	0,054	0,054	0,054	69	
1,2,3,4,6,7,8 HpCDD	1,2,3,6,7,8 HxCDD	1,494	0,1	0,149	0,149	0,149	75	
OCDD 3,665 0,0001 0,000 0,000 0,000 35 2,3,7,8 TCDF 0,441 0,1 0,04 0,044 0,044 70 1,2,3,7,8 PCDF 0,359 0,05 0,018 0,018 0,018 0,018 / 2,3,4,7,8 PCDF 0,612 0,5 0,306 0,306 0,306 59 1,2,3,4,7,8 HxCDF 0,627 0,1 0,063 0,063 0,063 68 1,2,3,4,7,8 HxCDF 0,747 0,1 0,075 0,075 0,075 73 2,3,4,6,7,8 HxCDF 0,765 0,1 0,077 0,077 0,077 51 1,2,3,7,8,9 HxCDF	1,2,3,7,8,9 HxCDD	0,717	0,1	0,072	0,072	0,072	/	
2,3,7,8 TCDF	1,2,3,4,6,7,8 HpCDD	4,758	0,01	0,048	0,048	0,048	56	
1,2,3,7,8 PeCDF	OCDD	3,665	0,0001	0,000	0,000	0,000	35	
2,3,4,7,8 PeCDF 0,612 0,5 0,306 0,306 0,306 59 1,2,3,4,7,8 HxCDF 0,627 0,1 0,063 0,063 0,063 68 1,2,3,6,7,8 HxCDF 0,747 0,1 0,075 0,075 0,075 73 2,3,4,6,7,8 HxCDF 0,765 0,1 0,077 0,077 0,077 51 1,2,3,7,8,9 HxCDF	2,3,7,8 TCDF	0,441	0,1	0,044	0,044	0,044	70	
1,2,3,4,7,8 HxCDF 0,627 0,1 0,063 0,063 0,063 68 1,2,3,6,7,8 HxCDF 0,747 0,1 0,075 0,075 0,075 73 2,3,4,6,7,8 HxCDF 0,765 0,1 0,077 0,077 0,077 51 1,2,3,7,8,9 HxCDF <0,116	1,2,3,7,8 PeCDF	0,359	0,05	0,018	0,018	0,018	1	
1,2,3,6,7,8 HxCDF 0,747 0,1 0,075 0,075 0,075 73 2,3,4,6,7,8 HxCDF 0,765 0,1 0,077 0,077 0,077 51 1,2,3,7,8,9 HxCDF < 0,116	2,3,4,7,8 PeCDF	0,612	0,5	0,306	0,306	0,306	59	
1,2,3,6,7,8 HxCDF 0,747 0,1 0,075 0,075 0,075 73 2,3,4,6,7,8 HxCDF 0,765 0,1 0,077 0,077 0,077 51 1,2,3,7,8,9 HxCDF < 0,116	1,2,3,4,7,8 HxCDF	0,627	0,1	0,063	0,063	0,063	68	
1,2,3,7,8,9 HxCDF		0,747	0,1	0,075	0,075	0,075	73	
1,2,3,7,8,9 HxCDF		0,765	0.1	0.077	0.077	0.077	51	
1,2,3,4,6,7,8 HpCDF 2,780 0,01 0,028 0,028 0,028 53 1,2,3,4,7,8,9 HpCDF < 0,049								
1,2,3,4,7,8,9 HpCDF							53	
OCDF 0,963 0,0001 0,000 0,000 0,000 32 TOTAL TEQ WHO-1998 (pg/g de MS) 1,350 1,404 1,458 TOTAL TEQ WHO-2005 (pg/g de MS) 1,221 1,275 1,329 TOTAL TEQ NATO (pg/g de MS) 1,145 1,199 1,253 TOTAL TEQ WHO-1998 (pg/g de MF) 0,156 0,162 0,168 TOTAL TEQ WHO-2005 (pg/g de MF) 0,141 0,147 0,153 TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947								
TOTAL TEQ WHO-2005 (pg/g de MS) 1,221 1,275 1,329 TOTAL TEQ NATO (pg/g de MS) 1,145 1,199 1,253 TOTAL TEQ WHO-1998 (pg/g de MF) 0,156 0,162 0,168 TOTAL TEQ WHO-2005 (pg/g de MF) 0,141 0,147 0,153 TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947 Total PCDD 38,739 Total HxCDD 41,499 Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8		0,963	0,0001	0,000	0,000	0,000	32	
TOTAL TEQ WHO-2005 (pg/g de MS) 1,221 1,275 1,329 TOTAL TEQ NATO (pg/g de MS) 1,145 1,199 1,253 TOTAL TEQ WHO-1998 (pg/g de MF) 0,156 0,162 0,168 TOTAL TEQ WHO-2005 (pg/g de MF) 0,141 0,147 0,153 TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947 Total PCDD 38,739 Total HxCDD 41,499 Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	TOTAL TEO WHO-199	98 (pg/g de MS)		1,350	1,404	1,458		
TOTAL TEQ NATO (pg/g de MS) 1,145 1,199 1,253 TOTAL TEQ WHO-1998 (pg/g de MF) 0,156 0,162 0,168 TOTAL TEQ WHO-2005 (pg/g de MF) 0,141 0,147 0,153 TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947 Total PCDD 38,739 Total HxCDD 41,499 Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8								
TOTAL TEQ WHO-1998 (pg/g de MF) 0,156 0,162 0,168 TOTAL TEQ WHO-2005 (pg/g de MF) 0,141 0,147 0,153 TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947 11,948 11,947 11,948 11,947 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,948 11,9								
TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947		· · · · · · · · · · · · · · · · · · ·						
TOTAL TEQ NATO (pg/g de MF) 0,132 0,138 0,145 Total TCDD 11,947	TOTAL TEQ WHO-20	05 (pg/g de MF)		0,141	0,147	0,153		
Total PeCDD 38,739 Total HxCDD 41,499 Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PeCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8		0.0		0,132	0,138	0,145		
Total HxCDD 41,499 Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PeCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total TCDD	11,947						
Total HpCDD 13,457 Total PCDD 109,3 Total TCDF 14,938 Total PeCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total PeCDD	38,739						
Total PCDD 109,3 Total TCDF 14,938 Total PcDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total HxCDD	41,499						
Total TCDF 14,938 Total PeCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total HpCDD	13,457						
Total PeCDF 10,431 Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total PCDD	109,3						
Total HxCDF 7,978 Total HpCDF 3,447 Total PCDF 37,8	Total TCDF	14,938						
Total HpCDF 3,447 Total PCDF 37,8	Total PeCDF	10,431						
Total PCDF 37,8	Total HxCDF	7,978						
	Total HpCDF	3,447						
	Total PCDF	37,8						
Marquage de l'extrait avant injection Le 06/12/2022 à 11:00	Marquage de l'extrait ava	nt injection		Le 06	5/12/2022 à 11	1:00		
Analyse par GC/HRMS Lc 07/12/2022 à 04:30	Analyse par GC/HRMS			Le 07	//12/2022 à 04	1:30		

 $\underline{L\acute{e}gende} : < valeur (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

MicroPolluants Technologie SA

Page 6 sur 9

Référence Interne	Référence Interne				BERK068					
Référence Externe			22/EVE/11/RG/06							
Nature			Bio-indicateur / Végétaux							
Taux de matière sèche (%)			13,7							
Masse de matière sèche anal-	ysée (g)		2,509							
Volume final après concentra	ation (µl)			10						
Volume d'extrait injecté (µl)				2						
Congénère	Concentration (pg/g de MS)	TEF (WHO 1998)	TEQ (min)	TEQ (med)	TEQ (max)	% Rec. 13C				
2,3,7,8 TCDD	< 0,353	1	0,000	0,177	0,353	92				
1,2,3,7,8 PeCDD	< 0,381	1	0,000	0,191	0,381	80				
1,2,3,4,7,8 HxCDD	< 0,218	0,1	0,000	0,011	0,022	52				
1,2,3,6,7,8 HxCDD	0,490	0,1	0,049	0,049	0,049	61				
1,2,3,7,8,9 HxCDD	0,394	0,1	0,039	0,039	0,039	/				
1,2,3,4,6,7,8 HpCDD	3,370	0,01	0,034	0,034	0,034	63				
OCDD	7,924	0,0001	0,001	0,001	0,001	71				
2,3,7,8 TCDF	< 0,301	0,1	0,000	0,015	0,030	74				
1,2,3,7,8 PeCDF	< 0,334	0,05	0,000	0,008	0,017	/				
2,3,4,7,8 PeCDF	0,430	0,5	0,215	0,215	0,215	69				
1,2,3,4,7,8 HxCDF	0,917	0,1	0,092	0,092	0,092	53				
1,2,3,6,7,8 HxCDF	0,431	0,1	0,043	0,043	0,043	55				
2,3,4,6,7,8 HxCDF	0,738	0,1	0,074	0,074	0,074	54				
1,2,3,7,8,9 HxCDF	0,310	0,1	0,031	0,031	0,031	/				
1,2,3,4,6,7,8 HpCDF	2,181	0,01	0,022	0,022	0,022	53				
1,2,3,4,7,8,9 HpCDF	0,342	0,01	0,003	0,003	0,003	/				
OCDF	2,818	0,0001	0,000	0,000	0,000	63				
TOTAL TEQ WHO-1998 ((pg/g de MS)		0,603	1,004	1,406					
TOTAL TEQ WHO-2005 ((pg/g de MS)		0,519	0,917	1,315					
TOTAL TEQ NATO (pg/g	de MS)		0,613	0,919	1,225					
TOTAL TEQ WHO-1998 ((pg/g de MF)		0,082	0,137	0,192					
TOTAL TEQ WHO-2005 ((pg/g de MF)		0,071	0,125	0,180	~				
TOTAL TEQ NATO (pg/g	de MF)		0,084	0,125	0,167					
Total TCDD	< 7,769					5.0				
Total PeCDD	< 5,334									
Total HxCDD	11,555									
Total HpCDD	7,369									
Total PCDD 26	,848 < Total < 39,951									
Total TCDF	< 11,435									
Total PeCDF	< 9,441									
Total HxCDF	5,451									
Total HpCDF	3,722									
Total PCDF 11	,991 < Total < 32,867									
Marquage de l'extrait avant i	njection		Le 07	/12/2022 à 11	1:30					
Analyse par GC/HRMS	.75%		Le 08	/12/2022 à 00):52					

<u>Légende</u>: < valeur (caractère simple) : valeur inférieure à la limite de quantification Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.

MicroPolluants Technologie SA

Page 7 sur 9

Référence Interne			BERK069					
Référence Externe				22/EVE/11/I	RG/07			
Nature			Bio-indicateur / Végétaux					
Taux de matière sèche (%)			13,1 4,885					
Masse de matière sèche ana	alysée (g)							
Volume final après concent	tration (µl)			10				
Volume d'extrait injecté (µ	l)			2				
Congénère	Concentration (pg/g de MS)	TEF (WHO 1998)	TEQ (min)	TEQ (med)	TEQ (max)	% Rec. 13C		
2,3,7,8 TCDD	< 0,064	1	0,000	0,032	0,064	82		
1,2,3,7,8 PeCDD	< 0,145	1	0,000	0,073	0,145	58		
1,2,3,4,7,8 HxCDD	0,187	0,1	0,019	0,019	0,019	60		
1,2,3,6,7,8 HxCDD	0,516	0,1	0,052	0,052	0,052	67		
1,2,3,7,8,9 HxCDD	0,374	0,1	0,037	0,037	0,037	/		
1,2,3,4,6,7,8 HpCDD	4,381	0,01	0,044	0,044	0,044	51		
OCDD	7,919	0,0001	0,001	0,001	0,001	32		
2,3,7,8 TCDF	0,362	0,1	0,036	0,036	0,036	63		
1,2,3,7,8 PeCDF	0,372	0,05	0,019	0,019	0,019	/		
2,3,4,7,8 PeCDF	0,463	0,5	0,232	0,232	0,232	52		
1,2,3,4,7,8 HxCDF	0,723	0,1	0,072	0,072	0,072	59		
1,2,3,6,7,8 HxCDF	0,595	0,1	0,060	0,060	0,060	66		
2,3,4,6,7,8 HxCDF	0,518	0,1	0,052	0,052	0,052	50		
1,2,3,7,8,9 HxCDF	0,151	0,1	0,015	0,015	0,015	/		
1,2,3,4,6,7,8 HpCDF	1,993	0,01	0,020	0,020	0,020	49		
1,2,3,4,7,8,9 HpCDF	0,240	0,01	0,002	0,002	0,002	/		
OCDF	2,602	0,0001	0,000	0,000	0,000	30		
TOTAL TEQ WHO-1998	3 (pg/g de MS)		0,660	0,764	0,869			
TOTAL TEQ WHO-2005	(pg/g de MS)		0,562	0,666	0,771			
TOTAL TEQ NATO (pg/	g de MS)		0,669	0,738	0,806			
TOTAL TEQ WHO-1998	(pg/g de MF)		0,086	0,100	0,113	-		
TOTAL TEQ WHO-2005	(pg/g de MF)		0,073	0,087	0,101	7.		
TOTAL TEQ NATO (pg/			0,087	0,096	0,105			
Total TCDD	3,882							
Total PeCDD	7,352							
Total HxCDD	13,404							
Total HpCDD	11,687							
Total PCDD	44,2							
Total TCDF	8,405							
Total PeCDF	5,069							
Total HxCDF	4,748							
Total HpCDF	2,960							
Total PCDF	23,8							
Marquage de l'extrait avant	injection			/12/2022 à 1				
Analyse par GC/HRMS			Le 07	/12/2022 à 05	5:10			

<u>Légende</u>: < valeur (caractère simple) : valeur inférieure à la limite de quantification Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.

MicroPolluants Technologie SA

Page 8 sur 9

Référence Interne			BERK070					
Référence Externe			22/EVE/11/RG/08					
Nature			Bio	-indicateur /	Végétaux			
Taux de matière sèche (%)		10,5					
Masse de matière sèche	analysée (g)		5,003					
Volume final après conc	centration (µl)			10				
Volume d'extrait injecté	(µl)			2				
Congénère	Concentration	TEF	TEQ	TEQ	TEQ	% Rec. 13C		
	(pg/g de MS)	(WHO 1998)	(min)	(med)	(max)			
2,3,7,8 TCDD	< 0,107	1	0,000	0,054	0,107	88		
1,2,3,7,8 PeCDD	< 0,115	1	0,000	0,058	0,115	64		
1,2,3,4,7,8 HxCDD	< 0,070	0,1	0,000	0,004	0,007	68		
1,2,3,6,7,8 HxCDD	0,187	0,1	0,019	0,019	0,019	67		
1,2,3,7,8,9 HxCDD	0,095	0,1	0,010	0,010	0,010	/		
1,2,3,4,6,7,8 HpCDD	0,826	0,01	0,008	0,008	0,008	54		
OCDD	0,833	0,0001	0,000	0,000	0,000	37		
2,3,7,8 TCDF	0,130	0,1	0,013	0,013	0,013	69		
1,2,3,7,8 PeCDF	< 0,078	0,05	0,000	0,002	0,004	1		
2,3,4,7,8 PeCDF	< 0,076	0,5	0,000	0,019	0,038	58		
1,2,3,4,7,8 HxCDF	< 0,055	0,1	0,000	0,003	0,006	65		
1,2,3,6,7,8 HxCDF	< 0,054	0,1	0,000	0,003	0,005	62		
2,3,4,6,7,8 HxCDF	0,079	0,1	0,008	0,008	0,008	55		
1,2,3,7,8,9 HxCDF	< 0,048	0,1	0,000	0,002	0,005	/		
1,2,3,4,6,7,8 HpCDF	0,240	0,01	0,002	0,002	0,002	54		
1,2,3,4,7,8,9 HpCDF	< 0,042	0,01	0,000	0,000	0,000	1		
OCDF	< 0,089	0,0001	0,000	0,000	0,000	36		
TOTAL TEQ WHO-19	998 (pg/g de MS)		0,060	0,203	0,347			
TOTAL TEQ WHO-20	005 (pg/g de MS)		0,060	0,195	0,330			
TOTAL TEQ NATO (pg/g de MS)		0,061	0,175	0,290			
TOTAL TEQ WHO-19	998 (pg/g de MF)		0,006	0,021	0,037			
TOTAL TEQ WHO-20	005 (pg/g de MF)		0,006	0,021	0,035	13.		
TOTAL TEQ NATO (pg/g de MF)		0,006	0,018	0,031	-		
Total TCDD	< 2,353					5.0		
Total PeCDD	2,879							
Total HxCDD	2,336							
Total HpCDD	3,591							
Total PCDD	9,639 < Total < 11,992							
Total TCDF	4,806							
Total PeCDF	< 2,138							
Total HxCDF	< 0,876							
Total HpCDF	0,348							
Total PCDF	5,154 < Total < 8,257							
Marquage de l'extrait av	ant injection		Le 06	/12/2022 à 11	:00			
Analyse par GC/HRMS				/12/2022 à 05				
			200					

 $\underline{L\acute{e}gende} \ \ \stackrel{<}{\cdot} \ \ valeur \ (caractère simple) : valeur inférieure à la limite de quantification \\ Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.$

MicroPolluants Technologie SA

Page 9 sur 9

Annexe 4 - Évolution des teneurs en PCDD/F dans les graminées dans l'environnement d'EveRé depuis 2009

PCDD/F (pg TEQ_{OMS 2005}/g MS)^{a,b}

	Gr 1	Gr 2	Gr 3	Gr 4	Gr 5	Gr 6	Gr 7	Gr 8
2009 (Etat initial)	0,16	0,14	0,09	0,12	0,21	0,17	-	-
Campagne 1 – 2010	0,00	0,52	0,27	0,11	0,15	0,63	_	-
Campagne 2 – 2010	0,00	0,33	0,56	0,04	0,12	0,25	-	-
Campagne 3 – 2010	0,04	1,46	0,06	0,39	0,31	0,78	-	-
Campagne 4 – 2010	0,18	0,92	1,96	0,55	0,52	1,88	-	-
Campagne 1 – 2011	0,10	0,85	22,97	-	0,77	0,49	0,86	-
Campagne 2 – 2011	0,10	1,02	1,32	0,46	0,68	0,69	0,39	-
Campagne 3 – 2011	0,08	5,16	11,36	0,93	0,96	1,22	2,16	-
Campagne 1 – 2012	0,04	0,05	0,02	0,44	0,18	0,01	0,06	-
Campagne 2 – 2012	0,01	0,06	0,16	0,17	0,20	0,56	13,35	-
Campagne 1 – 2013	0,01	0,05	0,16	0,25	0,09	0,08	0,06	-
Campagne 2 – 2013	0,02	0,04	0,21	0,08	0,02	0,16	1,20	-
Campagne 1 – 2014	0,00	0,16	0,10	0,05	0,08	0,16	0,48	_
Campagne 2 – 2014	0,09	0,58	0,61	0,18	0,28	0,30	0,72	-
Campagne 1 – 2015	0,01	0,00	0,04	0,00	0,00	0,00	0,07	-
Campagne 2 - 2015	0,06	0,11	0,08	0,05	0,19	0,06	0,17	-
2016	0,03	0,01	0,00	0,00	0,25	-	0,03	-
Campagne 1 - 2017	1,12	0,58	0,91	0,36	0,09	0,16	0,01	-
Campagne 2 - 2017	0,07	0,11	0,00	0,26	0,26	0,68	-	-
Campagne 1 - 2018	0,00	0,00	0,00	0,02	0,25	0,00	0,01	-
Campagne 2 - 2018	0,03	0,74	0,03	1,06	1,17	-	0,43	-
Campagne 1 - 2019	0,01	0,09	0,13	0,28	0,48	0,09	0,04	-
Campagne 2 - 2019	0,08	0,28	0,78	0,33	0,26	0,02	0,41	-
Campagne 1 - 2020	0,08	0,48	0,14	0,19	0,07	1,21	0,42	0,10
Campagne 2 - 2020	0,03	0,27	4,77	0,60	0,11	-	0,40	0,06
Campagne 1 – 2021	0,02	0,25	3,06	0,14	0,38	0,19	0,73	0,003
Campagne 2 - 2021	0,13	1,28	1,32	1,80	0,15	0,76	0,83	0,24
Campagne 1 – 2022	0,00	0,01	0,49	0,06	0,01	0,08	0,05	0,00
Campagne 2 - 2022	0,78	1,00	3,97	0,47	1,22	0,52	0,56	0,06

⁽a) La concentration est exprimée en considérant toutes les concentrations des congénères inférieures à la limite de détection égale à 0.

⁽b) Les tirets indiquent l'absence de mesure.

Annexe 5 - Résultats d'analyses de métaux dans les graminées pour la campagne d'automne 2022 (période d'exposition du 25 octobre au 24 novembre 2022)

4, mc de Bort-lès-Orgues ZAC de Grimont / BP 40 010 57 070 SAINT JULIEN-LES-METZ Telephone: 03 87-50.60.70 Telécopie: 03 87-50.81.31 contact@mp-tech.net www.mp-tech.net

RAPPORT D'ANALYSES BERL007_MET_R1

BIOMONITOR

Monsieur Matthieu BAGARD 25, rue Anatole France

54530 - PAGNY/MOSELLE

Vos références : N° 22-LC-152 du 25/11/2022

Echantillon reçu le : 28/11/2022

Analyse effectuée le : 01-02/12/2022

Norme: Méthode interne MOp C-4/18

Technique: ICP_MS

Matrice: Bio-indicateur / Végétaux

Date	Description	Validé par
05/12/2022	Rapport final	Mamoune EL HIMRI
		(m) 23

Responsable d'analyse

MicroPolluants Technologie SA

1 sur 10 Pages

Référence externe : 22/EVE/11/RG/01 Référence interne : BERK063	i.
Poids frais (g)	113.8
Poids sec (g)	13,9
% eau	87.8
Eléments	Concentration en mg/Kg de MS**
V	<0,125
Cr	0,30
Mn	64,1
Со	<0,125
Ni	4,83
Cu	6,81
Zn	41,2
As	0,087
Cd	0,092
Sn	<0,125
Sb	0,18
TI	<0,125
Pb	0,16
Eléments	Concentration en mg/Kg de MF**
V	<0,015
Cr	0,037
Mn	7,82
Co	<0,015
Ni	0,59
Cu	0,83
Zn	5,03
As	0,011
Cd	0,011
Sn	<0,015
Sb	0,022
TI	<0,015
Pb	0,020

2 sur 10 Pages

Référence externe : 22/EVE/11/RG/02 Référence interne : BERK064	
Poids frais (g)	89.6
Poids sec (g)	10.1
% eau	88.7
Eléments	Concentration en mg/Kg de MS**
V	0,15
Cr	0,50
Mn	73,6
Со	0,20
Ni	5,40
Cu	7,99
Zn	48,5
As	0,12
Cd	0,15
Sn	<0,125
Sb	<0,125
TI	<0,125
Pb	0,51
Eléments	Concentration en mg/Kg de MF**
V	0,017
Cr	0,057
Mn	8,32
Со	0,023
Ni	0,61
Cu	0,90
Zn	5,48
As	0,014
Cd	0,017
Sn	<0,014
Sb	<0,014
TI	<0,014
Pb	0,058

3 sur 10 Pages

Référence externe : 22/EVE/11/RG/03 Référence interne : BERK065	
Poids frais (g)	142.9
Poids sec (g)	16
% eau	88.8
Eléments	Concentration en mg/Kg de MS**
V	<0,125
Cr	0,40
Mn	77,5
Со	0,19
Ni	5,41
Cu	7,50
Zn	42,0
As	0,12
Cd	0,099
Sn	<0,125
Sb	<0,125
TI	<0,125
Pb	0,58
Eléments	Concentration en mg/Kg de MF**
V	<0,014
Cr	0,045
Mn	8,68
Co	0,021
Ni	0,61
Cu	0,84
Zn	4,70
As	0,013
Cd	0,011
Sn	<0,014
Sb	<0,014
TI	<0,014
Pb	0,065

4 sur 10 Pages

Référence externe : 22/EVE/11/RG/04 Référence interne : BERK066	
Poids frais (g)	131.4
Poids sec (g)	14.6
% eau	88.9
Eléments	Concentration en mg/Kg de MS**
V	0,92
Cr	2,67
Mn	79,4
Со	0,33
Ni	6,14
Cu	10,5
Zn	54,3
As	0,24
Cd	0,14
Sn	0,46
Sb	0,19
TI	<0,125
Pb	2,32
Eléments	Concentration en mg/Kg de MF**
V	0,10
Cr	0,30
Mn	8,81
Co	0,037
Ni	0,68
Cu	1,17
Zn	6,03
As	0,027
Cd	0,016
Sn	0,051
Sb	0,021
TI	<0,014
Pb	0,26

5 sur 10 Pages

Référence externe : 22/EVE/11/RG/05/Référence interne : BERK067	5
Poids frais (g)	70.2
Poids sec (g)	8,1
% eau	88.5
Eléments	Concentration en mg/Kg de MS**
V	0,20
Cr	0,83
Mn	86,5
Со	0,42
Ni	7,59
Cu	9,61
Zn	52,0
As	0,11
Cd	0,066
Sn	<0,125
Sb	<0,125
Tl	<0,125
Pb	0,41
Eléments	Concentration en mg/Kg de MF**
V	0,023
Cr	0,095
Mn	9,95
Co	0,048
Ni	0,87
Cu	1,11
Zn	5,98
As	0,013
Cd	0,008
Sn	<0,014
Sb	<0,014
TI	<0,014
Pb	0,047

6 sur 10 Pages

Référence externe : 22/EVE/11/RG/08 Référence interne : BERK068	6
Poids frais (g)	22.7
Poids sec (g)	3,1
% eau	86,3
Eléments	Concentration en mg/Kg de MS**
V	0,19
Cr	0,39
Mn	109
Со	0,51
Ni	6,62
Cu	12,3
Zn	53,2
As	0,091
Cd	0,099
Sn	0,16
Sb	<0,125
Tl	<0,125
Pb	0,36
Eléments	Concentration en mg/Kg de MF**
V	0,026
Cr	0,053
Mn	14,9
Co	0,070
Ni	0,91
Cu	1,69
Zn	7,29
As	0,012
Cd	0,014
Sn	0,022
Sb	<0,017
Tl	<0,017
Pb	0,049

7 sur 10 Pages

Référence externe : 22/EVE/11/RG/07 Référence interne : BERK069	
Poids frais (g)	53.6
Poids sec (g)	7
% eau	86.9
Eléments	Concentration en mg/Kg de MS**
V	0,52
Cr	0,64
Mn	81,6
Со	0,47
Ni	7,56
Cu	10,8
Zn	53,4
As	0,13
Cd	0,085
Sn	<0,125
Sb	<0,125
TI	<0,125
Pb	0,70
Eléments	Concentration en mg/Kg de MF**
V	0,068
Cr	0,084
Mn	10,7
Со	0,062
Ni	0,99
Cu	1,41
Zn	7,00
As	0,017
Cd	0,011
Sn	<0,016
Sb	<0,016
TI	<0,016
Pb	0,092

8 sur 10 Pages

Référence externe : 22/EVE/11/RG/08 Référence interne : BERK070	
Poids frais (g)	103.5
Poids sec (g)	10.9
% eau	89.5
Eléments	Concentration en mg/Kg de MS**
V	<0,125
Cr	0,22
Mn	88,1
Со	0,46
Ni	6,45
Cu	8,04
Zn	46,0
As	0,064
Cd	0,066
Sn	<0,125
Sb	<0,125
TI	<0,125
Pb	0,056
Eléments	Concentration en mg/Kg de MF**
V	<0,013
Cr	0,023
Mn	9,25
Со	0,048
Ni	0,68
Cu	0,84
Zn	4,83
As	0,007
Cd	0,007
Sn	<0,013
Sb	<0,013
TI	<0,013
Pb	0,006

9 sur 10 Pages

BERL007_MET_R1

La reproduction de ce rapport d'analyses n'est autorisée que sous sa forme intégrale. Il compo**nque(s)et** 0 annexe(s). Le présent rapport ne concerne que les objets soumis à essais.

Légende:

< Valeur (caractère simple): valeur inférieure à la limite de quantification</p>

Les incertitudes associées aux résultats quantitatifs sont disponibles auprès du laboratoire.

** MF: matière fraîche MS: matière sèche.

MicroPolluants Technologie SA

10 sur 10 Pages

BERL007_MET_R1

La reproduction de ce rapport d'analyses n'est autorisée que sous sa forme intégrale. Il compo**nque(s)et** 0 annexe(s). Le présent rapport ne concerne que les objets soumis à essais.

4, mc de Bort-lès-Orgues ZAC de Grimont / BP 40 010 57 070 SAINT JULIEN-LES-METZ Teléphone: 03 87.50.60.70 Telécopie: 03 87.50.81.31 contact@mp-tech.net www.mp-tech.net

RAPPORT D'ANALYSES BERL008_MEG_R1

BIOMONITOR

Monsieur Matthieu BAGARD

25, rue Anatole France

54530 - PAGNY/MOSELLE

Vos références N° 22-LC-152 du 25/11/2022

Echantillon reçu le 28/11/2022

Analyse effectuée le : 01-05/12/2022

Norme: Méthode interne Mop C-4/47

Technique: AFS

Matrice: Bio-indicateur / Végétaux

Date	Description	Validé par
06/12/2022	Rapport final	Mamoune EL HIMRI
		(mas

Responsable d'analyse

MicroPolluants Technologie SA

1 sur 5 Pages

BERL008_MEG_R1

Référence externe : 22/EVE/11/RG/01 Référence interne : BERK063	
Poids frais (g)	113.8
Poids sec (g)	13.9
% Eau	87.8
Eléments	Concentration en mg/Kg de MS**
Hg	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003
Référence externe : 22/EVE/11/RG/02 Référence interne : BERK064	
Poids frais (g)	89.6
Poids sec (g)	10.1
% Eau	88.7
Eléments	Concentration en mg/Kg de MS**
Hg	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003
Référence externe : 22/EVE/11/RG/03 Référence interne : BERK065	
Poids frais (g)	142.9
Poids sec (g)	16
% Eau	88.8
Eléments	Concentration en mg/Kg de MS**
Hg	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003

Référence externe : 22/EVE/11/RG/04 Référence interne : BERK066		_
Poids frais (g)	131.4	
Poids sec (g)	14.6	
% Eau	88,9	
Eléments	Concentration en mg/Kg de MS**	
Hg	<0,025	
Eléments	Concentration en mg/Kg de MF**	
Hg	<0,003	
Référence externe : 22/EVE/11/RG/05 Référence interne : BERK067	70.2	_
Poids sec (g)	8.1	
% Eau	88.5	
Eléments	Concentration en mg/Kg de MS**	
Нд	<0,025	
Elémente		_
Eléments	Concentration en mg/Kg de MF**	

Référence externe : 22/EVE/11/RG/06 Référence interne : BERK/068	
Poids frais (g)	22.7
Poids sec (g)	3.1
% Eau	86.3
Eléments	Concentration en mg/Kg de MS**
Hg	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003
Référence externe : 22/EVE/11/RG/07 Référence interne : BERK069	
Poids frais (g)	53.6
Poids sec (g)	7
% Eau	86.9
Eléments	Concentration en mg/Kg de MS**
Hg	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003
Référence externe : 22/EVE/11/RG/08 Référence interne : BERK070	
Poids frais (g)	103.5
Poids sec (g)	10.9
% Eau	89.5
Eléments	Concentration en mg/Kg de MS**
Нд	<0,025
Eléments	Concentration en mg/Kg de MF**
Hg	<0,003

4 sur 5 Pages

BERL008_MEG_R1

La reproduction de ce rapport d'analyses n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s)et 0 annexe(s). Le présent rapport ne concerne que les objets soumis à essais.

5 sur 5 Pages

BERL008_MEG_R1

La reproduction de ce rapport d'analyses n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s)et 0 annexe(s). Le présent rapport ne concerne que les objets soumis à essais.

Annexe 6 - Évolution des teneurs en métaux dans les graminées dans l'environnement d'EveRé depuis 2009

Métaux (mg/kg MS):

As	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,40	0,10	0,25	0,20	0,18	0,24	0,38	0,27	0,13	0,31	0,11	0,20	0,11	0,21	0,20	0,19	0,09	0,71	0,08	0,18	0,15	0,13	0,07	0,18	0,05	0,10	0,05	0,07	0,09
Station 2	1,60	0,17	0,36	0,47	0,34	0,19	0,28	0,42	0,18	0,34	0,13	0,27	0,17	0,21	0,21	0,28	0,19	0,44	0,22	0,21	0,14	0,10	0,10	0,20	0,11	0,09	0,15	0,10	0,12
Station 3	0,85	0,19	0,28	0,44	0,27	0,25	0,54	0,45	0,16	0,38	0,15	0,32	0,12	0,21	0,14	0,16	0,16	0,23	0,17	0,11	0,11	0,13	0,07	0,22	0,12	0,10	0,13	0,08	0,12
Station 4	0,42	0,10	0,17	0,35	0,18	-	0,36	0,51	0,26	0,30	0,15	0,27	0,17	0,25	0,38	0,20	0,07	0,44	0,14	0,12	0,15	0,14	0,10	0,19	0,15	0,15	0,31	0,18	0,24
Station 5	0,45	0,11	0,17	0,26	0,18	0,28	0,28	0,30	0,22	0,26	0,11	0,24	0,16	0,21	0,21	0,15	0,11	0,31	0,09	0,12	0,22	0,13	0,13	0,15	0,07	0,09	0,08	0,10	0,11
Station 6	0,60	0,14	0,27	0,34	0,25	0,29	0,34	0,41	0,12	0,46	0,14	0,20	0,18	0,24	0,28	0,16	ı	0,77	0,34	0,22	-	0,10	0,08	0,18	-	0,09	0,14	0,12	0,09
Station 7		-	ı	ı	-	0,46	0,62	0,49	0,12	0,34	0,20	0,24	0,14	0,21	0,21	0,24	0,27	0,41	-	0,21	0,14	0,12	0,09	0,34	0,11	0,14	0,22	0,11	0,13
Station 8	-	-	ı	ı	-	-	-	-	-	-	ı	-	-	-	-	-	ı	ı	-	ı	-	-	-	0,18	0,06	0,08	0,05	0,07	0,06

Cd	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,07	0,12	0,03	0,10	0,06	0,04	0,05	0,11	-	0,09	-	0,04	-	0,12	0,07	0,05	0,05	0,04	0,06	0,06	0,09	0,03	0,05	0,04	0,07	0,06	0,05	0,07	0,09
Station 2	0,15	0,12	0,08	0,18	0,09	0,08	0,06	0,17	0,03	0,10	-	0,07	0,04	0,10	0,12	0,13	0,09	0,04	0,08	0,06	0,14	0,04	0,05	0,04	0,12	0,08	0,15	0,08	0,15
Station 3	0,18	0,17	0,08	0,37	0,09	0,13	0,11	0,27	-	0,14	0,06	0,07	0,03	0,12	0,08	0,13	0,10	0,08	0,15	0,03	0,09	0,05	0,05	0,10	0,36	0,08	0,14	0,04	0,10
Station 4	0,11	0,1	0,05	0,09	0,09	-	0,06	0,12	0,03	0,10	-	0,03	0,03	0,05	0,13	0,06	0,05	0,08	0,06	0,03	0,11	0,04	0,06	0,07	0,13	0,08	0,14	0,05	0,14
Station 5	0,07	0,13	0,03	0,10	0,09	0,04	0,05	0,16	0,03	0,12	-	0,03	0,03	0,10	0,05	0,06	0,06	0,05	0,06	0,03	0,11	0,04	0,07	0,04	0,08	0,07	0,07	0,05	0,07
Station 6	0,08	0,11	0,12	0,14	0,09	0,07	0,08	0,15	0,05	0,12	-	0,04	0,04	0,11	0,08	0,08	-	0,08	0,14	0,06	-	0,04	0,06	0,13	-	0,05	0,15	0,05	0,10
Station 7	-	ı	ı	ı	-	0,08	0,07	0,17	0,03	0,13	0,03	0,06	0,03	0,12	0,07	0,09	0,25	0,05	-	0,06	0,09	0,03	0,06	0,07	0,13	0,08	0,22	0,04	0,09
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,03	0,07	0,04	0,05	-	0,07

Со	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,21	0,25	0,28	0,14	0,32	-	0,21	0,78	0,29	0,86	0,15	0,32	-	0,92	0,54	0,53	0,31	1,09	0,72	0,27	0,35	0,47	0,45	1,29	0,17	-	0,15	-	-
Station 2	1,29	0,38	0,34	0,37	0,34	-	0,15	0,67	0,29	0,55	0,18	0,32	0,16	0,77	0,63	0,66	0,37	0,26	0,79	0,35	0,52	0,57	0,44	1,62	0,35	0,14	0,51	-	0,20
Station 3	0,59	0,31	0,34	0,24	0,86	-	0,15	0,82	0,26	0,68	0,22	0,39	0,17	0,85	0,42	0,79	0,47	0,229	0,76	0,40	0,49	0,73	0,64	1,94	0,36	0,15	0,44	ı	0,19
Station 4	0,22	0,47	0,21	0,22	0,32	-	0,20	0,56	0,29	0,81	0,17	0,16	-	0,64	0,80	0,43	0,25	0,41	0,75	0,36	0,6	0,53	0,42	1,38	0,43	0,16	0,3	0,19	0,33
Station 5	0,23	0,29	0,19	0,17	0,29	-	0,17	0,97	0,22	1,20	0,16	0,25	0,13	0,67	0,80	0,45	0,31	0,32	0,57	0,44	0,51	0,24	0,42	1,22	0,24	-	0,45	0,16	0,42
Station 6	0,33	0,38	0,41	0,13	0,52	-	0,18	0,76	0,59	0,37	0,18	0,27	0,14	1,43	0,55	0,67	-	0,43	0,89	0,40	-	0,51	0,32	1,69	-	-	0,29	0,21	0,51
Station 7	-	-	-	ı	-	-	0,28	0,63	0,35	0,91	0,16	0,37	0,16	0,68	0,76	0,68	0,53	0,41	-	0,41	0,36	0,19	0,53	1,78	0,28	0,17	0,5	0,20	0,47
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,93	0,35	-	0,27	-	0,46

Cr	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,60	0,61	0,53	-	-	0,49	0,73	0,76	0,35	0,52	0,21	0,13	-	0,28	0,32	0,29	0,29	4,12	0,21	0,35	0,53	0,58	0,23	0,17	0,31	0,46	0,27	0,36	0,30
Station 2	3,00	0,79	0,62	1,29	0,70	1,00	1,38	3,45	0,26	1,65	0,45	0,92	0,38	1,66	1,34	1,36	7,39	4,74	4,23	0,38	0,86	0,92	0,62	0,37	0,78	1,03	2,32	0,62	0,50
Station 3	1,63	0,88	0,72	1,33	0,67	1,18	1,76	4,05	0,20	3,89	0,62	0,72	0,41	1,01	1,15	1,09	4,49	0,71	4,08	0,35	0,49	0,26	0,58	0,35	1,13	0,69	1,83	1,06	0,40
Station 4	1,56	0,42	0,41	0,81	0,48	-	1,51	5,7	2,15	3,75	0,65	0,57	1,09	1,62	0,96	1,11	0,60	3,66	2,12	1,33	2,28	1,58	1,04	1,05	5,2	1,36	20,7	1,99	2,67
Station 5	0,89	0,33	0,17	0,26	0,30	0,74	0,94	1,41	1,04	0,98	0,18	0,36	0,62	0,81	1,41	0,63	0,44	1,66	0,86	0,61	3,19	0,73	0,57	0,39	0,56	0,92	0,75	0,67	0,83
Station 6	0,98	0,41	0,81	0,43	0,68	1,42	2,26	4,05	0,24	2,29	0,65	0,68	0,77	1,29	2,25	0,93	-	3,49	6,97	0,88	-	0,72	0,41	1,24	-	0,68	2,53	1,33	0,39
Station 7	-	-	-	-	-	2,59	3,39	6,22	-	2,51	0,74	1,29	0,76	1,18	1,57	2,26	3,60	2,98	-	0,96	0,72	1,01	0,41	1,46	1,29	1,74	3,94	0,99	0,64
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	0,21	0,38	0,22	0,43	0,22
Cu	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	4,4	12,4	5,1	7,3	6,9	5,0	5,4	6,2	5,4	4,6	4,0	5,1	5,1	6,7	6,3	4,3	6,5	6,5	4,1	3,8	6,2	4,1	5,8	3,8	5,3	3,7	4,0	4,6	6,8
Station 2	9,7	13,3	5,6	10,1	7,7	5,0	4,4	6,8	6,1	5,4	5,6	7,6	7,4	6,7	6,0	5,4	10,0	9,2	6,1	4,1	5,7	3,7	6,0	4,2	10,8	4,1	8,0	4,7	8,0
Station 3	9,6	14,8	5,5	11,9	6,2	6,2	7,2	10,8	6,0	7,8	5,2	8,3	6,6	6,5	6,1	7,2	13,4	5,3	7,9	4,2	5,0	3,3	7,4	4,7	11,9	4,2	12,8	3,0	7,5
Station 4	5,2	13,5	4,0	8,0	6,4	-	5,2	9,6	5,9	4,2	4,2	4,8	5,1	13,5	6,2	4,9	4,2	8,9	6,0	3,0	5,1	2,4	5,7	5,3	10,4	4,9	9,9	4,8	10,5
Station 5	5,2	14,4	3,2	7,8	8,4	4,8	4,8	7,9	4,6	5,1	5,0	5,2	5,7	9,6	3,8	3,7	6,3	4,3	4,7	4,1	7,9	2,9	5,6	3,3	6,0	3,5	5,6	3,8	9,6
Station 6	5,0	13,6	6,9	8,9	7,2	5,3	5,7	12,0	8,6	4,4	5,3	4,9	7,1	6,7	5,6	4,4	-	6,1	8,5	3,9	-	4,6	4,1	5,7		3,8	7,9	4,1	12,3
Station 7	-	-	-	-	-	6,1	6,2	6,4	7,0	5,0	6,0	7,2	5,4	5,9	5,9	4,6	8,7	4,9	-	3,8	4,9	2,6	5,8	5,1	9,3	5,0	17,9	3,8	10,8
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,8	6,9	2,1	4,5	1,6	8,0
			•			•	•	•			•		•		•	•	•	•	•				•		•	•		*	
											_																		
Hg	2009	2010-1	2010-2	2 2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Hg Station 1	2009	2010-1	2010-2	2 2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1 0,028	2021-2	2022-1	2022-2
		2010-1												2014-2			2016-2		2017-2					2020-1			2021-2		2022-2
Station 1	0,00	2010-1		0,05		-	0,60	-					-	2014-2			2016-2	-	2017-2 - - 0,03			0,03		2020-1 - - 0,06			2021-2		2022-2
Station 1 Station 2	0,00	-	-	0,05	0,36	-	0,60	- 0,04		-	-	-	-	-		-	2016-2	-	-			0,03		-	-	0,028			2022-2
Station 1 Station 2 Station 3	0,00 0,00 0,03	-	-	0,05 0,13 0,34	0,36	- 0,37	0,60 0,58 0,03	- 0,04 0,22	-	-	-	-	-	- 0,03		- 0,03	2016-2	- 0,03	-		-	0,03	-	-	-	0,028 - 0,03		-	2022-2 - - - -
Station 1 Station 2 Station 3 Station 4	0,00 0,00 0,03 0,04	-	-	0,05 0,13 0,34 0,05	0,36 - 0,46 0,08	0,37	0,60 0,58 0,03 0,10	- 0,04 0,22 0,16	- - - 0,12	- - 0,04 -	-	- - 0,04	- - 0,04 -	- - 0,03 0,03	-	- - 0,03	2016-2	- - 0,03 0,05	- - 0,03		- - - 0,03	0,03 0,03 - -	- - -	- - 0,06 -	-	0,028 - 0,03 0,038			2022-2 - - - - -
Station 1 Station 2 Station 3 Station 4 Station 5	0,00 0,00 0,03 0,04 0,00	0,07	0,07	0,05 0,13 0,34 0,05 0,05	0,36 - 0,46 0,08 0,26	- 0,37 -	0,60 0,58 0,03 0,10 0,05	- 0,04 0,22 0,16 0,09	- - - 0,12 0,04	- - 0,04 -	- - 0,03 -	- 0,04 -	- - 0,04 -	- 0,03 0,03 0,03	-	0,03	2016-2 - - - - - - - 0,08	- 0,03 0,05 0,03	- - 0,03 -	0,03 - - -	- - - 0,03 0,03	0,03 0,03 - - - 0,05	-	- 0,06 -	0,03	0,028 - 0,03 0,038 0,026		-	2022-2 - - - - - -
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6	0,00 0,00 0,03 0,04 0,00 0,04	0,07	- 0,07 - - 0,07	0,05 0,13 0,34 0,05 0,05	0,36 - 0,46 0,08 0,26	- 0,37 - - 0,12	0,60 0,58 0,03 0,10 0,05 0,18	- 0,04 0,22 0,16 0,09	- - - 0,12 0,04 -	- 0,04 - -	- 0,03 - -	- 0,04 - - 0,04	- - 0,04 -	- 0,03 0,03 0,03 0,03	-	- 0,03 - -		- 0,03 0,05 0,03 0,04	- - 0,03 -	0,03 - - - - - - 0,04	- - - 0,03 0,03	0,03 0,03 - - - 0,05		- 0,06 - - 0,03	- 0,03 - -	0,028 - 0,03 0,038 0,026	- - - -		2022-2 - - - - - -
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7	0,00 0,00 0,03 0,04 0,00 0,04	0,07	- 0,07 - - 0,07	0,05 0,13 0,34 0,05 0,05	0,36 - 0,46 0,08 0,26	- 0,37 - - 0,12 0,23	0,60 0,58 0,03 0,10 0,05 0,18	- 0,04 0,22 0,16 0,09	- - - 0,12 0,04 -	- 0,04 - -	- 0,03 - -	- 0,04 - - 0,04 0,06	- 0,04 - - -	- 0,03 0,03 0,03 0,03	-	- 0,03 - - - 0,04		- 0,03 0,05 0,03 0,04 0,07	- - 0,03 -	0,03 - - - - - - 0,04	- - - 0,03 0,03	0,03 0,03 - - - 0,05	-	- 0,06 - - 0,03	- 0,03 - - - - 0,14	0,028 - 0,03 0,038 0,026	- - - -	- - - - - - 0,03	2022-2 - - - - - - -
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7	0,00 0,00 0,03 0,04 0,00 0,04	- 0,07 - - - -	- 0,07 - - 0,07 -	0,05 0,13 0,34 0,05 0,05 0,22 -	0,36 - 0,46 0,08 0,26 0,18 -	- 0,37 - - 0,12 0,23	0,60 0,58 0,03 0,10 0,05 0,18 0,62	- 0,04 0,22 0,16 0,09	- - - 0,12 0,04 - -	- 0,04 - - - 0,46	- 0,03 - - - 0,03	- 0,04 - - 0,04 0,06	- 0,04 - - -	- 0,03 0,03 0,03 0,03 0,04	- - - - 0,17	- 0,03 - - - 0,04	- - - - - 0,08	- 0,03 0,05 0,03 0,04 0,07	- 0,03 - - 0,03 -	0,03 - - - - - - 0,04	- - - 0,03 0,03	0,03 0,03 - - - 0,05		- 0,06 - - 0,03 0,03	- 0,03 - - - 0,14	0,028 - 0,03 0,038 0,026	- - - -	- - - - - - 0,03	2022-2
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8	0,00 0,00 0,03 0,04 0,00 0,04 -	- 0,07 - - - -	- 0,07 - 0,07 - 0,07 -	0,05 0,13 0,34 0,05 0,05 0,22 -	0,36 - 0,46 0,08 0,26 0,18 -	- 0,37 - 0,12 0,23	0,60 0,58 0,03 0,10 0,05 0,18 0,62	- 0,04 0,22 0,16 0,09 0,32 1,51 -	- - - 0,12 0,04 - -	- 0,04 - - - 0,46	- 0,03 - - - 0,03	- 0,04 - - 0,04 0,06	- 0,04 - - - -	- 0,03 0,03 0,03 0,03 0,04	- - - - 0,17	- 0,03 - - - 0,04	- - - - - 0,08	- 0,03 0,05 0,03 0,04 0,07	- 0,03 - - 0,03 -	0,03 - - - - 0,04 0,03	- - - 0,03 0,03 - 0,04 -	0,03 0,03 - - 0,05 0,05 0,04 -		- 0,06 - - 0,03 0,03	- 0,03 - - - 0,14	0,028 - 0,03 0,038 0,026 - 0,086	- - - - - 0,08	- - - - - 0,03	- - - - -
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8	0,00 0,00 0,03 0,04 0,00 0,04 -	- 0,07 - - - - - 2010-:	- - 0,07 - - 0,07 - - - 1 2010-2	0,05 0,13 0,34 0,05 0,05 0,05 0,22 - - 2 2 2010-3	0,36 - 0,46 0,08 0,26 0,18	- 0,37 - 0,12 0,23 -	0,60 0,58 0,03 0,10 0,05 0,18 0,62	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3	- - 0,12 0,04 - - -	- 0,04 - - - 0,46 -	- 0,03 - - - 0,03 -	- 0,04 - 0,04 0,06 -	- 0,04 - - - - 2014-1	- 0,03 0,03 0,03 0,03 0,04 -	- - - - 0,17 - -	- 0,03 - - - 0,04 -	- - - - - 0,08	- 0,03 0,05 0,03 0,04 0,07 -	- 0,03 - - 0,03 - -	0,03 - - - - 0,04 0,03 -	- - - 0,03 0,03 - 0,04 -	0,03 0,03 - - 0,05 0,05 0,04 -	2019-2	- 0,06 - - 0,03 0,03 -	- 0,03 - - - 0,14 -	0,028 - 0,03 0,038 0,026 - 0,086 -	- - - - - 0,08 -	- - - - - 0,03 -	- - - - - - 2022-2
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8	0,00 0,00 0,03 0,04 0,00 0,04 - -	- 0,07 - - - - - 2010-:	- 0,07 - 0,07 - 0,07 155,0 103,0	0,05 0,13 0,34 0,05 0,05 0,22 - - 2 2 2010-3 44,0 65,0	0,36 - 0,46 0,08 0,26 0,18 3 2010-4 33,0	- 0,37 - 0,12 0,23 - 2011-1 62,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 -	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3 53,0 60,0	- - 0,12 0,04 - - - 2012-1 24,0	- 0,04 - - 0,46 - 2012-2 47,0	- 0,03 - - 0,03 - 2013-1 20,0	- 0,04 - - 0,04 0,06 - 2013-2	- 0,04 - - - - - 2014-1 52,8	- 0,03 0,03 0,03 0,03 0,04 - 2014-2	- - - - 0,17 - - 2015-1 182,0	- 0,03 - - - 0,04 - 2015-2 48,0	- - - - - 0,08 - 2016-2 51,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7	- 0,03 - 0,03 - 0,03 - - 2017-2 90,9	0,03 0,04 0,03 - 2018-1 75,7	- - 0,03 0,03 - 0,04 - 2018-2	0,03 0,03 - - 0,05 0,05 0,04 - 2019-1 118,0	- - - - - - 2019-2 102,0	- 0,06 - - 0,03 0,03 - 2020-1 162	- 0,03 - - - 0,14 - 2020-2 40	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42	- - - - - 0,08 -	- - - - - 0,03 - 2022-1 49,4	- - - - - - - 2022-2 64,1
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Mn Station 1 Station 2	0,00 0,00 0,03 0,04 0,00 0,04 - - 2009 67,0 146,0	- 0,07 - - - - - - 2010-1 92,0 108,0	- 0,07 - 0,07 - 0,07 2010-2 155,0 103,0 116,0	0,05 0,13 0,34 0,05 0,05 0,22 - - 2 2010-3 44,0	0,36 - 0,46 0,08 0,26 0,18 3 2010-4 33,0 40,0	- 0,37 - 0,12 0,23 - 2011-1 62,0 58,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 - 2011-2 60,0 45,0	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3 53,0 60,0	- - - 0,12 0,04 - - - 2012-1 24,0 25,0	- 0,04 - - 0,46 - 2012-2 47,0 48,0	- 0,03 - - 0,03 - 2013-1 20,0 21,0	- 0,04 - 0,04 0,06 - 2013-2 33,0 44,0	- 0,04 - - - - - 2014-1 52,8 81,2	- 0,03 0,03 0,03 0,03 0,04 - 2014-2 166,4 120,1	- - - - 0,17 - - 2015-1 182,0 182,0	- 0,03 - - - 0,04 - 2015-2 48,0 56,0	- - - - - 0,08 - 2016-2 51,0 86,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7 39,5	- 0,03 - 0,03 - 0,03 - - 2017-2 90,9 92,9	0,03 0,04 0,03 - 2018-1 75,7 55,0	- - - 0,03 0,03 - 0,04 - - 2018-2 109,0 102,0	0,03 0,03 - 0,05 0,05 0,04 - 2019-1 118,0 101,0	- - - - - - - 2019-2 102,0 95,3	- 0,06 - 0,03 0,03 - 2020-1 162 217	- 0,03 - - - 0,14 - 2020-2 40 42	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42 56	- - - - - 0,08 - 2021-2 68 144	- - - - - 0,03 - 2022-1 49,4 49,0	- - - - - - - 2022-2 64,1 73,6
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Mn Station 1 Station 2 Station 3	0,00 0,00 0,03 0,04 0,00 0,04 - - 2009 67,0 146,0 81,0	- - 0,07 - - - - - - 2010-: 92,0 108,0 100,0	- 0,07 - 0,07 - 0,07 155,0 103,0 116,0 98,0	0,05 0,13 0,34 0,05 0,05 0,22 - - - 2 2010-3 44,0 65,0 46,0 60,0	0,36 - 0,46 0,08 0,26 0,18 3 2010-4 33,0 40,0 50,0	- 0,37 - 0,12 0,23 - 2011-1 62,0 58,0 65,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 - 2011-2 60,0 45,0 39,0	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3 53,0 60,0 76,0 84,0	- - 0,12 0,04 - - - 2012-1 24,0 25,0 24,0	- 0,04 - - 0,46 - 2012-2 47,0 48,0 70,0	- 0,03 - - 0,03 - 2013-1 20,0 21,0 22,0	- 0,04 - 0,06 - 2013-2 33,0 44,0 43,0	- 0,04 	- 0,03 0,03 0,03 0,03 0,04 - 2014-2 166,4 120,1 106,6	- - - - 0,17 - - 2015-1 182,0 123,0	- 0,03 - - - 0,04 - 2015-2 48,0 56,0 44,0	- - - - - 0,08 - 2016-2 51,0 86,0 60,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7 39,5 28,6	- 0,03 - - 0,03 - - - 2017-2 90,9 92,9 87,0	0,03 0,04 0,03 - 2018-1 75,7 55,0 56,8	- - 0,03 0,03 - 0,04 - 2018-2 109,0 102,0 118,0	0,03 0,03 - - 0,05 0,05 0,04 - 2019-1 118,0 101,0 172,0	- - - - - - - 2019-2 102,0 95,3 96,6	- 0,06 - 0,03 0,03 - 2020-1 162 217 198	- 0,03 0,14 - 2020-2 40 42 52	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42 56 50	- - - - - 0,08 - 2021-2 68 144 98	- - - - - 0,03 - 2022-1 49,4 49,0 47,7	
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Mn Station 1 Station 2 Station 3 Station 4	0,00 0,00 0,03 0,04 0,00 0,04 - - - 2009 67,0 146,0 81,0	- 0,07 - - - - - - 2010-1 92,0 108,0 110,0	- 0,07 - 0,07 - 0,07 155,0 103,0 116,0 98,0 76,0	0,05 0,13 0,34 0,05 0,05 0,22 - - 2 2010-3 44,0 65,0 46,0 60,0 50,0	0,36 - 0,46 0,08 0,26 0,18 33,0 40,0 50,0 27,0	- 0,37 - 0,12 0,23 - 2011-1 62,0 58,0 65,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 - 2011-2 60,0 45,0 39,0 54,0	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3 53,0 60,0 76,0 84,0 55,0	- - 0,12 0,04 - - - 2012-1 24,0 25,0 24,0 32,0	- 0,04 0,46 - 2012-2 47,0 48,0 70,0 66,0	- 0,03 - - 0,03 - 0,03 - 20,0 21,0 22,0 22,0	- 0,04 - 0,04 0,06 - 2013-2 33,0 44,0 43,0 25,0	- 0,04 	- 0,03 0,03 0,03 0,03 0,04 - 2014-2 166,4 120,1 106,6 135,1	- - - - 0,17 - - - 2015-1 182,0 182,0 171,0	- 0,03 - - - 0,04 - 2015-2 48,0 56,0 44,0 38,0	- - - - - 0,08 - 2016-2 51,0 86,0 60,0 34,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7 39,5 28,6 50,2	- 0,03 - 0,03 - 0,03 - - - 2017-2 90,9 92,9 87,0 90,3	0,03 0,04 0,03 - 2018-1 75,7 55,0 56,8 49,1	- - 0,03 0,03 - 0,04 - 2018-2 109,0 102,0 118,0 129,0	0,03 0,03 - 0,05 0,05 0,04 - 2019-1 118,0 101,0 172,0 123,0	- - - - - - - 2019-2 102,0 95,3 96,6 107,0	- 0,06 - 0,03 0,03 - 2020-1 162 217 198 155	- 0,03 0,14 - 2020-2 40 42 52 49	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42 56 50 56	- - - - - 0,08 - 2021-2 68 144 98 115	- - - - - 0,03 - 2022-1 49,4 49,0 47,7 47,6	
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Mn Station 1 Station 2 Station 3 Station 4 Station 5	0,00 0,00 0,03 0,04 0,00 0,04 - - 2009 67,0 146,0 81,0 67,0 66,0	- 0,07 	- 0,07 - 0,07 - 0,07 155,0 103,0 116,0 98,0 76,0	0,05 0,13 0,34 0,05 0,05 0,22 - - 2 2010-3 44,0 65,0 46,0 60,0 50,0	0,36 - 0,46 0,08 0,26 0,18 33,0 40,0 50,0 27,0 40,0	- 0,37 - 0,12 0,23 - 2011-1 62,0 58,0 65,0 - 68,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 - 2011-2 60,0 45,0 39,0 54,0 44,0	- 0,04 0,22 0,16 0,09 0,32 1,51 - 2 2 2011-3 53,0 60,0 76,0 84,0 55,0	- 0,12 0,04 2012-1 24,0 25,0 24,0 32,0 27,0	- 0,04 0,46 - 2012-2 47,0 48,0 70,0 66,0 55,0	- 0,03 - 0,03 - 0,03 - 2013-1 20,0 21,0 22,0 21,0	- 0,04 - 0,04 0,06 - 2013-2 33,0 44,0 43,0 25,0 35,0	- 0,04 	- 0,03 0,03 0,03 0,03 0,04 - 2014-2 166,4 120,1 106,6 135,1 152,1	- - - - - 0,17 - - 2015-1 182,0 123,0 171,0 64,0	- 0,03 0,04 2015-2 48,0 56,0 44,0 38,0 39,0	- - - - - 0,08 - 2016-2 51,0 86,0 60,0 34,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7 39,5 28,6 50,2 43,7	- 0,03 - 0,03 - 0,03 - - 2017-2 90,9 92,9 87,0 90,3 83,1	0,03 0,04 0,03 - 2018-1 75,7 55,0 56,8 49,1 52,0	- - - 0,03 0,03 - 0,04 - - 2018-2 109,0 102,0 118,0 129,0 96,6	0,03 0,03 0,05 0,05 0,04 - 118,0 101,0 172,0 123,0 66,7	- - - - - - - 2019-2 102,0 95,3 96,6 107,0 105,0	- 0,06 0,03 0,03 - 2020-1 162 217 198 155 153	- 0,03 0,14 2020-2 40 42 52 49 41	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42 56 50 56	- - - - - - 0,08 - - 2021-2 68 144 98 115 181	- - - - - - 0,03 - - 2022-1 49,4 49,0 47,7 47,6 45,7	
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Mn Station 1 Station 2 Station 3 Station 4 Station 5 Station 6	0,00 0,00 0,03 0,04 0,00 0,04 - - 2009 67,0 146,0 81,0 67,0 66,0	- 0,07 	- 0,07 - 0,07 - 0,07 155,0 103,0 116,0 98,0 76,0 135,0	0,05 0,13 0,34 0,05 0,05 0,22 - - - 2 2010-3 44,0 65,0 46,0 60,0 50,0	0,36 - 0,46 0,08 0,26 0,18 33,0 40,0 50,0 27,0 40,0	- 0,37 - 0,12 0,12 0,23 - 2011-1 62,0 58,0 65,0 - 68,0 87,0	0,60 0,58 0,03 0,10 0,05 0,18 0,62 - 2011-2 60,0 45,0 39,0 54,0 44,0 58,0	- 0,04 0,22 0,16 0,09 0,32 1,51 2 2 2011-3 53,0 60,0 76,0 84,0 55,0 55,0	- 0,12 0,04 	- 0,04 0,46 2012-2 47,0 48,0 70,0 66,0 55,0 128,0	- 0,03 0,03 - 0,03 - 20,03 - 22,0 21,0 22,0 22,0 21,0 28,0	- 0,04 - 0,04 0,06 - 2013-2 33,0 44,0 43,0 25,0 35,0 58,0	- 0,04 	- 0,03 0,03 0,03 0,03 0,04 - 2014-2 166,4 120,1 106,6 135,1 152,1 162,7	- - - - 0,17 - - - 182,0 182,0 171,0 64,0 57,0	- 0,03 - - 0,04 - - 2015-2 48,0 56,0 44,0 38,0 39,0 34,0	- - - - - 0,08 - - 2016-2 51,0 86,0 60,0 34,0 57,0	- 0,03 0,05 0,03 0,04 0,07 - 2017-1 44,7 39,5 28,6 50,2 43,7 56,8	- 0,03 - 0,03 - 0,03 - - 2017-2 90,9 92,9 87,0 90,3 83,1	0,03 0,04 0,03 - 2018-1 75,7 55,0 56,8 49,1 52,0 52,8	- - 0,03 0,03 - 0,04 - - 2018-2 109,0 102,0 118,0 129,0 96,6 -	0,03 0,03 - 0,05 0,05 0,04 - 2019-1 118,0 101,0 172,0 123,0 66,7 106,0	- - - - - - - - - - - - - - - - - - -	- 0,06 - 0,03 0,03 0,03 - 2020-1 162 217 198 155 153 161	- 0,03 0,14 - 2020-2 40 42 52 49 41	0,028 - 0,03 0,038 0,026 - 0,086 - 2021-1 42 56 50 56 50 54	- - - - - 0,08 - - 2021-2 68 144 98 115 181 83	- - - - - 0,03 - 2022-1 49,4 49,0 47,7 47,6 45,7 43,8	

6,4

3,3

9,1

7,4

2,6

4,0

5,6

8,6

7,2

3,0

4,0

3,1

5,7

2009

4,7

Station 1

4,6

4,9

4,6

	,	,	,	· '	,	,	_ ′	_ ′	′	_ ′	1 '	· '	′	· /	,	,	′	,	,	·	,	,	_ ′	,	,	,	1 '	· '	1
Station 2	9,4	8,1	4,9	13,2	5,7	3,4	3,6	5,8	8,5	5,9	4,3	5,4	3,9	7,8	5,5	5,5	8,2	9,4	7,0	5,8	4,6	2,9	6,6	5,0	8,3	7,1	7,3	7,1	7,3
Station 3	7,0	6,6	4,3	9,7	5,6	2,7	2,7	6,2	7,6	7,3	3,5	5,1	4,1	6,2	5,5	7,9	9,8	6,9	6,9	5,6	3,8	5,4	6,0	6,0	8,7	6,7	6,7	6,7	6,7
Station 4	6,0	9,5	3,5	9,5	5,7	-	4,3	5,5	9,7	7,9	2,7	2,8	2,6	4,9	5,7	4,3	7,0	7,4	7,3	5,0	4,0	2,9	5,9	6,1	10,0	6,9	9,0	6,9	9,0
Station 5	5,6	7,3	2,8	9,4	7,2	3,2	5,5	6,4	7,6	9,6	3,5	5,9	3,5	4,4	3,8	4,6	7,7	5,9	5,8	6,5	7,4	2,6	6,6	4,8	7,2	5,3	7,1	5,3	7,1
Station 6	5,6	9,8	5,6	5,4	6,2	3,1	4,9	6,0	13,1	5,5	4,3	4,5	3,6	8,2	3,4	6,5	-	6,3	9,4	4,1	-	6,8	4,5	6,1	-	5,5	7,4	5,5	7,4
Station 7	-	-	-	-	-	2,8	4,0	6,5	10,2	7,6	3,1	4,6	4,6	6,0	4,0	5,6	8,6	7,1	-	5,1	4,1	2,6	6,9	8,8	7,8	4,9	7,2	4,9	7,2
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,5	8,4	4,8	5,1	4,8	5,1
	1			I	l .	ı	I		I	I			1	1	I	I	I	I	I		l	1	I					<u>I</u>	•
Pb	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,50	0,20	0,30	0,30	0,10	0,40	0,40	0,80	0,15	0,27	0,17	0,16	0,12	0,40	0,17	0,17	0,15	0,66	0,20	0,26	0,62	0,20	0,29	0,20	0,15	0,27	0,12	0,27	0,12
Station 2	3,60	0,70	0,80	2,10	0,90	0,60	0,90	3,60	0,17	1,50	0,45	1,27	0,48	2,65	0,74	2,16	3,80	0,53	2,11	0,41	1,35	0,50	0,59	0,41	3,20	0,77	2,76	0,77	2,76
Station 3	2,60	1,70	1,00	5,60	1,60	2,00	4,30	7,10	0,14	5,81	1,83	2,07	0,47	4,27	0,91	3,23	6,36	0,77	4,65	0,33	0,79	0,30	0,66	1,13	5,07	1,17	6,34	1,17	6,34
Station 4	0,90	0,30	0,20	0,40	0,20	-	0,80	2,10	0,40	1,22	0,34	0,30	0,17	0,95	0,45	0,38	0,21	0,71	0,71	0,33	1,36	0,30	0,86	1,29	1,84	0,79	5,00	0,79	5,00
Station 5	0,60	0,20	0,30	0,50	0,30	0,40	0,50	1,50	0,31	0,78	0,15	0,24	0,14	0,92	0,51	0,32	0,26	0,45	0,44	0,35	1,74	0,30	0,75	0,43	0,46	0,48	0,25	0,48	0,25
Station 6	1,20	0,20	1,00	0,90	0,60	1,00	1,20	3,90	0,26	2,12	0,45	0,50	0,59	1,96	0,67	0,36	-	1,67	4,12	0,68	-	0,60	0,52	2,00	-	0,76	1,49	0,76	1,49
Station 7	-	-	-	-	-	1,70	1,60	4,40	0,07	1,87	0,54	0,58	0,37	3,94	0,67	1,16	3,93	1,36	-	0,45	0,89	0,40	0,46	1,61	2,13	1,57	5,95	1,57	5,95
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,06	0,19	0,06	0,07	0,06	0,07
Sb	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	-	-	-	0,13	-	-	0,16	0,13	-	-	-	-	-	0,20	-	-	-	-	-	0,13	0,30	0,43	0,15	-	0,19	0,24	-	-	0,18
Station 2	-	-	-	0,23	3,74	-	-	0,20	-	-	-	-	_	-	-	0,15	0,20	-	0,13	-	0,14	-	-	_	0,18	-	0,5	-	-
Station 3	-	0,24	-	1,91	0,61	0,70	0,54	0,47	-	0,20	0,24	-	-	-	-	0,19	0,32	0,27	0,53	-	-	-	-	0,20	0,89	0,14	0,37	-	-
Station 4	-	-	-	-	-	-	-	0,13	-	-	-	-	-	-	-	-	-	-	0,19	-	0,15	-	-	-	0,15	-	0,34	-	0,19
Station 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Station 6	-	-	-	0,13	0,93	-	-	0,20	-	-	-	-	-	-	0,23	-	-	-	0,14	-	-	-	-	0,35	-	-	0,13	-	-
Station 7	-	-	-	-	-	0,27	0,17	0,40	-	0,16	-	-	-	-	-	0,18	1,30	0,16	-	-	-	-	-	0,15	0,18	0,15	0,56	-	-
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
										2042.2	2013-1	2042.2	22111	2044.2			2046.2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Sn	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	ZU15-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2												
Sn Station 1	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2		2013-2	2014-1		2015-1	2015-2	2016-2			_	_	0 14	_	_	_	0.15	0.20	_	_
Station 1	-	-	-	-	2010-4	-	0,16	-	-	-	-	-	2014-1	-	2015-1	-	-	-	-	-	- 0.15	0,14	-	-	- 0.36	0,15	0,20	-	- -
Station 1 Station 2	- 0,48	-	- 0,14	- 0,28	-	- 0,15	0,16 0,17	- 0,25		-	-	-	-	-		- 0,15	- 0,31	-	- 0,18	-	- 0,15			-	- 0,36 0,75	-	0,49		- - -
Station 1 Station 2 Station 3	-	-	-	-	-	-	0,16 0,17 0,67	- 0,25 0,59	-	-	-	-	-	- - 0,23	-	-	-	- 0,21	-		0,15	-			0,75	- 0,19	0,49 0,85	-	- - - 0.46
Station 1 Station 2 Station 3 Station 4	- 0,48	- - 0,15	- 0,14	- 0,28 1,10	-	- 0,15	0,16 0,17 0,67 0,17	- 0,25	-	-	-	-	-	-	-	- 0,15 0,19	- 0,31	-	- 0,18 0,65	- - -	0,15	-	-	-		-	0,49	-	- - - 0,46
Station 1 Station 2 Station 3 Station 4 Station 5	- 0,48 0,71 -	- - 0,15 -	- 0,14 0,16 -	- 0,28 1,10	-	- 0,15	0,16 0,17 0,67 0,17 0,14	- 0,25 0,59 0,21	- - -	-	-	-	-	- - 0,23	- - - -	- 0,15 0,19 -	- 0,31	- 0,21 0,13	- 0,18 0,65 - 0,26	- - - -	0,15 - -	-	-	- 0,16 - -	0,75	- 0,19	0,49 0,85 0,47		-
Station 1	- 0,48	- 0,15 -	- 0,14	- 0,28 1,10 - 0,14	- - 0,24 -	- 0,15	0,16 0,17 0,67 0,17	- 0,25 0,59		- - 0,44 -	- - -		-	- 0,23 0,35	-	- 0,15 0,19 -	- 0,31	- 0,21	- 0,18 0,65	- - - - -	0,15 - -	- - -	-	-	0,75	- 0,19 0,14 -	0,49 0,85		- - 0,46 - 0,16

2010-1 2010-2 2010-3 2010-4 2011-1 2011-2 2011-3 2011-1 2011-2 2011-3 201

4,9

8,0

11,7

6,1

3,8

3,8

2,6

6,7

4,3

7,2

4,9

6,0

ті	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Station 2	0,25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Station 3	0,59	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
Station 4	0,21	-	-	ı	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		1	-	-	-
Station 5	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Station 6	0,17	-	-	ı	-	-	-	1	-	ı	1	1	-	ı	1	-	-	-	-	-	ı	ı	ı	ı	ı	1	-	-	-
Station 7	0,4	-	-	ı	-	-	-	ı	-	ı	ı	ı	-	ı	ı	-	-	-	-	-	ı	ı	ı	ı	1	ı	-	-	-
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

v	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	0,40	-	0,30	0,20	0,10	0,34	0,54	0,48	0,14	0,22	0,22	-	-	0,27	-	-	-	3,89	0,14	0,19	0,43	0,21	-	-	0,13	0,16	-	0,13	-
Station 2	3,10	0,23	0,40	1,10	0,40	0,53	0,71	1,05	0,38	0,53	0,20	0,20	0,24	0,44	0,39	0,39	0,67	2,62	0,67	0,26	0,68	0,22	0,17	0,18	0,16	0,15	0,41	0,22	0,15
Station 3	1,70	0,33	0,30	0,60	0,20	0,47	0,73	1,22	0,28	0,58	0,27	0,17	0,13	0,30	0,26	0,33	0,43	0,38	0,60	0,18	0,37	-	-	-	0,18	0,13	0,29	0,13	-
Station 4	0,50	-	0,20	0,50	0,10	-	1,42	1,44	2,46	1,05	0,25	-	0,54	0,36	0,30	0,31	-	1,41	0,69	0,38	1,06	0,98	0,38	0,85	1,08	0,64	1,99	0,49	0,92
Station 5	0,50	-	0,20	0,50	-	0,31	0,50	0,60	0,90	0,49	0,15	-	0,51	0,59	0,23	0,36	0,36	0,87	0,64	0,21	0,96	1,28	0,23	0,33	0,38	0,4	0,22	0,26	0,2
Station 6	1,10	-	0,60	1,60	0,20	1,09	1,70	2,74	0,47	3,07	0,87	0,39	1,43	1,52	0,75	0,75	-	3,13	5,12	1,08	-	0,68	0,50	0,55	-	0,32	1,38	0,37	0,19
Station 7	-	-	-	-	-	1,28	3,63	2,64	-	1,02	0,57	0,38	0,38	0,75	1,00	0,89	0,82	2,48	-	0,59	1,21	1,04	0,37	9,99	0,69	0,86	0,97	0,73	0,52
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Zn	2009	2010-1	2010-2	2010-3	2010-4	2011-1	2011-2	2011-3	2012-1	2012-2	2013-1	2013-2	2014-1	2014-2	2015-1	2015-2	2016-2	2017-1	2017-2	2018-1	2018-2	2019-1	2019-2	2020-1	2020-2	2021-1	2021-2	2022-1	2022-2
Station 1	24,0	57,0	15,0	35,0	24,0	19,0	19,0	31,0	22,3	30,9	28,0	27,0	22,0	32,0	38,0	19,0	35,0	27,2	22,1	21,7	30,5	18,6	41,1	20,1	27,9	23,8	28,4	32,0	41,2
Station 2	34,0	42,0	23,0	61,0	27,0	21,0	18,0	42,0	24,3	39,8	30,0	39,0	35,0	34,0	43,0	35,0	70,0	28,9	46,9	21,5	31,2	14,5	41,1	24,1	43,4	31,3	50,8	33,0	48,5
Station 3	30,0	59,0	22,0	69,0	25,0	28,0	37,0	66,0	22,5	50,2	34,0	41,0	28,0	38,0	36,0	41,0	77,0	23,4	50,1	21,3	29,3	19,4	38,7	31,4	82,0	34,6	68,1	21,3	42,0
Station 4	38,0	101,0	20,0	35,0	21,0	ı	27,0	44,0	24,3	34,7	43,0	24,0	23,0	31,0	52,0	24,0	29,0	34,7	29,2	15,9	32,8	14,7	42,7	28,6	47,2	32,2	108,0	29,7	54,3
Station 5	27,0	44,0	13,0	36,0	26,0	20,0	19,0	30,0	22,8	34,4	30,0	26,0	27,0	33,0	33,0	19,0	19,0	23,5	23,8	23,1	42,7	14,9	80,8	20,3	29,8	26,5	41,1	25,1	52,0
Station 6	34,0	100,0	32,0	31,0	25,0	30,0	29,0	60,0	39,8	52,6	33,0	29,0	32,0	37,0	37,0	26,0	-	35,6	98,3	21,9	ı	28,2	28,3	37,0	-	28,9	58,0	30,9	53,2
Station 7	1	-	-	-	-	30,0	31,0	69,0	32,3	42,2	31,0	34,0	28,0	33,0	35,0	26,0	64,0	32,2	-	23,4	30,1	18,2	46,8	31,7	38,7	31,4	75,9	22,8	53,4
Station 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18,5	29,5	20,8	27,9	12,0	46,0